EEEEEEEE
EEEEEEEEE
NNNNNNNN
AAAAAAAAAA

UCRL-SM-212121

sundialsTB, a Matlab Interface to
SUNDIALS

R. Serban

May 10, 2005

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by University of
California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

SUNDIALST B, a MATLAB Interface to SUNDIALS

Radu Serban
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

May 2005

UCRL-SM-000000

Contents

1 Introduction

1.1 Notes . . . o o e e e e

1.2 Requirements e e e e e

1.3 Imstallation e

1.4 LinkS. o e s
2 MATLAB Interface to CVODES

2.1 Imterface functions

2.2 Function types
3 MATLAB Interface to KINSOL

3.1 Imterface functions

3.2 Function types
4 Supporting modules

4.1 NVECTOR functions e

4.2 Parallel utilities

References

DO = =

w

1 Introduction

SUNDIALS [2], SUite of Nonlinear and DIfferential /ALgebraic equation Solvers, is a family of software
tools for integration of ODE and DAE initial value problems and for the solution of nonlinear systems
of equations. It consists of CVODE, IDA, and KINSOL, and variants of these with sensitivity analysis
capabilities.

SUNDIALSTB is a collection of MATLAB functions which provide interfaces to the SUNDIALS solvers.

The core of each MATLAB interface in SUNDIALSTB is a single MEX file which interfaces to the
various user-callable functions for that solver. However, this MEX file should not be called directly,
but rather through the user-callable functions provided for each MATLAB interface.

A major design principle for SUNDIALSTB was to provide an interface that is, as much as possible,
equally familiar to users of both the SUNDIALS codes and MATLAB. Moreover, we tried to keep
the number of user-callable functions to a minimum. For example, the CVODES MATLAB interface
contains only 9 such functions, 3 of which interface solely to the adjoint sensitivity module in
CVODES. In tune with the MATLAB ODESET function, optional solver inputs in SUNDIALSTB are
specified through a single function (CvodeSetOptions for CVODES). However, unlike the ODE
solvers in MATLAB, we have kept the more flexible SUNDIALS model in which a separate “solve”
function (CVodeSolve for CVODES) must be called to return the solution at a desired output time.
Solver statistics, as well as optional outputs (such as solution and solution derivatives at additional
times) can be obtained at any time with calls to separate functions (CVodeGetStats and CVodeGet
for CVODES).

This document provides a complete documentation for the SUNDIALSTB functions. For additional
details on the methods and underlying SUNDIALS software consult also the coresponding SUNDIALS
user guides (3, 1].

1.1 Notes

The version numbers for the MATLAB interfaces correspond to those of the corresponding SUNDIALS
solver with wich the interface is compatible.

1.2 Requirements

Each interface module in SUNDIALSTB requires the appropriate version of the corresponding SUN-
DIALS solver. For parallel support, SUNDIALSTB depends on MPITB with LAM v > 7.1.1 (for MPI-2
spawning feature).

1.3 Installation
1. Install the appropriate version of the SUNDIALS solver(s).

2. Modify Makefile (SUNDIALS location) in the mex directory and compile

3. Optionally, for parallel support, install and configure LAM (local copy, since typical installa-
tions only install static libraries) and MPITB

4. Add the following paths to your MATLAB startup.m script:

e sundialsTB/cvodes and sundialsTB/mex/cvm for CVODES
e sundialsTB/kinsol and sundialsTB/mex/kim for KINSOL
e sundialsTB/nvector and sundialsTB/mex/nvm for NVECTOR operations

e sundialsTB/putils for mpirun function
5. In MATLAB, try:

e help cvodes

e help kinsol

e help nvector

e help putils

1.4 Links

The required software packages can be obtained from the following addresses.
SUNDIALS http://www.llnl.gov/CASC/sundials
MPITB http://atc.ugr.es/javier-bin/mpitb_eng
LAM http://www.lam-mpi.org/

2 MATLAB Interface to CVODES

The MATLAB interface to CVODES provides access to all functionality of the CVODES solver, including

IVP simulation and sensitvity analysis (both forward and adjoint).

The interface consists of 9 user-callable functions. The user must provide several required and
optional user-supplied functions which define the problem to be solved. The user-callable functions
and the types of user-supplied functions are listed in Table 1 and fully documented later in this

section. For more in depth details, consult also the CVODES user guide [3].

To illustrate the use of the CVODES MATLAB interface, several example problems are provided
with SUNDIALSTB, both for serial and parallel computations. Most of them are MATLAB translations

of example problems provided with CVODES.

Table 1: CVODES MATLAB interface functions

CVodeSetOptions | creates an options structure for CVODES.
CVodeMalloc | allocates and initializes memory for CVODES.
2 CVodeMallocB | allocates and initializes backward memory for CVODES.
2 CVode | integrates the ODE.
= CVodeB | integrates the backward ODE.
& CVodeGetStats | returns statistics for the CVODES solver.
CVodeGetStatsB | returns statistics for the backward CVODES solver.
CVodeGet | extracts data from CVODES memory.
CVodeFree | deallocates memory for the CVODES solver.
CVodeMonitor | sample monitoring function.
CVRhsFn | RHS function
CVRootFn | root-finding function
CVQuadRhsFn | quadrature RHS function
8 CVDenseJacFn | dense Jacobian function
% CVBandJacFn | banded Jacobian function
g CVJactimesVecFn | Jacobian times vector function
ge CVPrecSetupFn | preconditioner setup function
g CVPrecSolveFn | preconditioner solve function
& CVGlocalFn | RHS approximation function (BBDPre)
CVGcommFn | communication function (BBDPre)
CVSensRhsFn | sensitivity RHS function
CVSensRhs1Fn | sensitivity RHS function (single)
CVMonitorFn | monitoring function

2.1 Interface functions

CVodeSetOptions

PURPOSE

CVodeSetOptions creates an options structure for CVODES.
SYNOPSIS

function options = CVodeSetOptions(varargin)
DESCRIPTION

CVodeSetOptions creates an options structure for CVODES.

Usage: OPTIONS
OPTIONS
OPTIONS

CVodeSetOptions (’NAME1’ ,VALUE1, ’NAME2’ ,VALUE2, . ..)
CVodeSetOptions (OLDOPTIONS, *NAME1’ ,VALUE1, . ..)
CVodeSetOptions (OLDOPTIONS , NEWOPTIONS)

OPTIONS = CVodeSetOptions(’NAME1’,VALUE1, ’NAME2’ ,VALUE2,...) creates
a CVODES options structure OPTIONS in which the named properties have
the specified values. Any unspecified properties have default values.
It is sufficient to type only the leading characters that uniquely
identify the property. Case is ignored for property names.

OPTIONS = CVodeSetOptions(OLDOPTIONS, NAME1’,VALUE1l,...) alters an
existing options structure OLDOPTIONS.

OPTIONS = CVodeSetOptions(OLDOPTIONS,NEWOPTIONS) combines an existing
options structure OLDOPTIONS with a new options structure NEWOPTIONS.
Any new properties overwrite corresponding old properties.

CVodeSetOptions with no input arguments displays all property names
and their possible values.

CVodeSetOptions properties
(See also the CVODES User Guide)

Adams - Use Adams linear multistep method [on | off]

This property specifies whether the Adams method is to be used instead
of the default Backward Differentiation Formulas (BDF) method.

The Adams method is recommended for non-stiff problems, while BDF is
recommended for stiff problems.

NonlinearSolver - Type of nonlinear solver used [Functional | Newton]
The ’Functional’ nonlinear solver is best suited for non-stiff
problems, in conjunction with the ’Adams’ linear multistep method,
while ’Newton’ is better suited for stiff problems, using the ’BDF’
method.

RelTol - Relative tolerance [positive scalar | le-4]

RelTol defaults to le-4 and is applied to all components of the solution
vector. See AbsTol.

AbsTol - Absolute tolerance [positive scalar or vector | 1le-6]

The relative and absolute tolerances define a vector of error weights
with components
ewt(i) = 1/(RelTolx*|y(i)| + AbsTol) if AbsTol is a scalar
ewt(i) = 1/(RelTolx*|y(i)| + AbsTol(i)) if AbsTol is a vector
This vector is used in all error and convergence tests, which
use a weighted RMS norm on all error-like vectors v:
WRMSnorm(v) = sqrt((1/N) sum(i=1..N) (v(i)*ewt(i))~2),
where N is the problem dimension.
MaxNumSteps - Maximum number of steps [positive integer | 500]
CVode will return with an error after taking MaxNumSteps internal steps
in its attempt to reach the next output time.
InitialStep - Suggested initial stepsize [positive scalar]
By default, CVode estimates an initial stepsize hO at the initial time
t0 as the solution of
WRMSnorm(h0~2 ydd / 2) =1
where ydd is an estimated second derivative of y(t0).
MaxStep - Maximum stepsize [positive scalar | inf]
Defines an upper bound on the integration step size.
MinStep - Minimum stepsize [positive scalar | 0.0]
Defines a lower bound on the integration step size.
MaxOrder - Maximum method order [1-12 for Adams, 1-5 for BDF | 5]
Defines an upper bound on the linear multistep method order.
StopTime - Stopping time [scalar]
Defines a value for the independent variable past which the solution
is not to proceed.
RootsFn - Rootfinding function [function]
To detect events (roots of functions), set this property to the event
function. See CVRootFn.
NumRoots - Number of root functions [integer | 0]
Set NumRoots to the number of functions for which roots are monitored.
If NumRoots is 0, rootfinding is disabled.
StabilityLimDet - Stability limit detection algorithm [on | off]
Flag used to turn on or off the stability limit detection algorithm
within CVODES. This property can be used only with the BDF method.
In this case, if the order is 3 or greater and if the stability limit
is detected, the method order is reduced.

LinearSolver - Linear solver type [Diag | Band | GMRES | BiCGStab | Dense]
Specifies the type of linear solver to be used for the Newton nonlinear
solver (see NonlinearSolver). Valid choices are: Dense (direct, dense
Jacobian), Band (direct, banded Jacobian), Diag (direct, diagonal Jacobian),
GMRES (iterative, scaled preconditioned GMRES), BiCGStab (iterative, scaled
preconditioned stabilized BiCG). The GMRES and BiCGStab are matrix-free
linear solvers.

JacobianFn - Jacobian function [function]

This propeerty is overloaded. Set this value to a function that returns
Jacobian information consistent with the linear solver used (see Linsolver).
If not specified, CVODES uses difference quotient approximations.

For the Dense linear solver, JacobianFn must be of type CVDenseJacFn and
must return a dense Jacobian matrix. For the Band linear solver, JacobianFn
must be of type CVBandJacFn and must return a banded Jacobian matrix.

For the iterative linear solvers, GMRES and BiCGStab, JacobianFn must be

of type CVJacTimesVecFn and must return a Jacobian-vector product. This
property is not used for the Diag linear solver.

PrecType - Preconditioner type [Left | Right | Both | None]

Specifies the type of user preconditioning to be done if an iterative linear
solver, GMRES or BiCGStab, is used (see LinSolver). PrecType must be one of
the following: ’None’, ’Left’, ’Right’, or ’Both’, corresponding to no
preconditioning, left preconditioning only, right preconditioning only, and
both left and right preconditioning, respectively.

PrecModule - Preconditioner module [BandPre | BBDPre | UserDefined]

If the PrecModule = ’UserDefined’, then the user must provide at least a
preconditioner solve function (see PrecSolveFn)
CVODES provides the following two general-purpose preconditioner modules:

BandPre provide a band matrix preconditioner based on difference quotients
of the ODE right-hand side function. The user must specify the lower and
upper half-bandwidths through the properties LowerBwidth and UpperBwidth,
respectively.

BBDPre can be only used with parallel vectors. It provide a preconditioner
matrix that is block-diagonal with banded blocks. The blocking corresponds
to the distribution of the dependent variable vector y among the processors.
Each preconditioner block is generated from the Jacobian of the local part
(on the current processor) of a given function g(t,y) approximating
f(t,y) (see GlocalFn). The blocks are generated by a difference quotient
scheme on each processor independently. This scheme utilizes an assumed
banded structure with given half-bandwidths, mldq and mudq (specified through
LowerBwidthDQ and UpperBwidthDQ, respectively). However, the banded Jacobian
block kept by the scheme has half-bandwiths ml and mu (specified through
LowerBwidth and UpperBwidth), which may be smaller.

PrecSetupFn - Preconditioner setup function [function]

If PrecType is not ’None’, PrecSetupFn specifies an optional function which,
together with PrecSolve, defines left and right preconditioner matrices
(either of which can be trivial), such that the product P1#P2 is an
aproximation to the Newton matrix. PrecSetupFn must be of type CVPrecSetupFn.

PrecSolveFn - Preconditioner solve function [function]

If PrecType is not ’None’, PrecSolveFn specifies a required function which
must solve a linear system Pz = r, for given r. PrecSolveFn must be of type
CVPrecSolveFn.

KrylovMaxDim - Maximum number of Krylov subspace vectors [integer | 5]
Specifies the maximum number of vectors in the Krylov subspace. This property
is used only if an iterative linear solver, GMRES or BiCGStab, is used (see
LinSolver) .

GramSchmidtType - Gram-Schmidt orthogonalization [Classical | Modified 1]
Specifies the type of Gram-Schmidt orthogonalization (classical or modified).
This property is used only if the GMRES linear solver is used (see LinSolver).

GlocalFn - Local right-hand side approximation funciton for BBDPre [function]
If PrecModule is BBDPre, GlocalFn specifies a required function that
evaluates a local approximation to the ODE right-hand side. GlocalFn must
be of type CVGlocFn.

GcommFn - Inter-process communication function for BBDPre [function]

If PrecModule is BBDPre, GcommFn specifies an optional function
to perform any inter-process communication required for the evaluation of
GlocalFn. GcommFn must be of type CVGcommFn.

LowerBwidth - Jacobian/preconditioner lower bandwidth [integer | 0O]

This property is overloaded. If the Band linear solver is used (see LinSolver),
it specifies the lower half-bandwidth of the band Jacobian approximation.

If one of the two iterative linear solvers, GMRES or BiCGStab, is used

(see LinSolver) and if the BBDPre preconditioner module in CVODES is used

(see PrecModule), it specifies the lower half-bandwidth of the retained
banded approximation of the local Jacobian block. If the BandPre preconditioner
module (see PrecModule) is used, it specifies the lower half-bandwidth of
the band preconditioner matrix. LowerBwidth defaults to O (no sub-diagonals).
UpperBwidth - Jacobian/preconditioner upper bandwidth [integer | 0]
This property is overloaded. If the Band linear solver is used (see LinSolver),
it specifies the upper half-bandwidth of the band Jacobian approximation.
If one of the two iterative linear solvers, GMRES or BiCGStab, is used
(see LinSolver) and if the BBDPre preconditioner module in CVODES is used
(see PrecModule), it specifies the upper half-bandwidth of the retained
banded approximation of the local Jacobian block. If the BandPre
preconditioner module (see PrecModule) is used, it specifies the upper
half-bandwidth of the band preconditioner matrix. UpperBwidth defaults to
0 (no super-diagonals).
LowerBwidthDQ - BBDPre preconditioner DQ lower bandwidth [integer | O]
Specifies the lower half-bandwidth used in the difference-quotient Jacobian
approximation for the BBDPre preconditioner (see PrecModule).
UpperBwidthDQ - BBDPre preconditioner DQ upper bandwidth [integer | O]
Specifies the upper half-bandwidth used in the difference-quotient Jacobian
approximation for the BBDPre preconditioner (see PrecModule).

Quadratures - Quadrature integration [on | off]
Enables or disables quadrature integration.

QuadRhsFn - Quadrature right-hand side function [function]
Specifies the user-supplied function to evaluate the integrand for
quadrature computations. See CVQuadRhsfn.

QuadInitCond - Initial conditions for quadrature variables [vector]
Specifies the initial conditions for quadrature variables.

QuadErrControl - Error control strategy for quadrature variables [on | off]
Specifies whether quadrature variables are included in the error test.

QuadRelTol - Relative tolerance for quadrature variables [scalar le-4]
Specifies the relative tolerance for quadrature variables. This parameter is
used only if QuadErrCon=on.

QuadAbsTol - Absolute tolerance for quadrature variables [scalar or vector le-6]
Specifies the absolute tolerance for quadrature variables. This parameter is
used only if QuadErrCon=on.

SensAnalysis - Sensitivity anlaysis [FSA | ASA | off]
Enables sensitivity analysis computations. CVODES can perform both Forward
Sensitivity Analysis (FSA) and Adjoint Sensitivity Analysis (ASA).

FSAInitCond - Initial conditions for sensitivity variables [matrix]
Specifies the initial conditions for semnsitivity variables. FSAInitcond
must be a matrix with N rows and Ns columns, where N is the problem
dimension and Ns the number of sensitivity systems.

FSAMethod - FSA solution method [Simultaneous | Staggeredl | Staggered]
Specifies the FSA method for treating the nonlinear system solution for
sensitivity variables. In the simultaneous case, the nonlinear systems
for states and all sensitivities are solved simultaneously. In the
Staggered case, the nonlinear system for states is solved first and then
the nonlinear systems for all sensitivities are solved at the same time.
Finally, in the Staggeredl approach all nonlinear systems are solved in
a sequence (in this case, the sensitivity right-hand sides must be available
for each sensitivity system sepaately - see SensRHS and SensRHStype).

FSAParamField - Problem parameters [string]

Specifies the name of the field in the user data structure (passed as an
argument to CVodeMalloc) in which the nominal values of the problem

parameters are stored. This property is used only if CVODES will use difference
quotient approximations to the sensitivity right-hand sides (see SensRHS and
SensRHStype) .

FSAParamList - Parameters with respect to which FSA is performed [integer vector]
Specifies a list of Ns parameters with respect to which sensitivities are to
be computed. This property is used only if CVODES will use difference-quotient
approximations to the sensitivity right-hand sides (see SensRHS and SensRHStype) .
Its length must be Ns, consistent with the number of columns of FSAinitCond.

FSAParamScales - Order of magnitude for problem parameters [vector]

Provides order of magnitude information for the parameters with respect to
which sensitivities are computed. This information is used if CVODES
approximates the sensitivity right-hand sides (see SensRHS) or if CVODES
estimates integration tolerances for the sensitivity variables (see FSAReltol
and FSAAbsTol).

FSARelTol - Relative tolerance for sensitivity variables [positive scalar]
Specifies the scalar relative tolerance for the sensitivity variables.

See FSAAbsTol.

FSAAbsTol - Absolute tolerance for sensitivity variables [row-vector or matrix]
Specifies the absolute tolerance for sensitivity variables. FSAAbsTol must be
either a row vector of dimension Ns, in which case each of its components is
used as a scalar absolute tolerance for the coresponding sensitivity vector,
or a N x Ns matrix, in which case each of its columns is used as a vector
of absolute tolerances for the corresponding sensitivity vector.

By default, CVODES estimates the integration tolerances for sensitivity
variables, based on those for the states and on the order of magnitude
information for the problem parameters specified through ParamScales.

FSAErrControl - Error control strategy for sensitivity variables [on | off]
Specifies whether sensitivity variables are included in the error control test.
Note that sensitivity variables are always included in the nonlinear system
convergence test.

FSARhsFn - Sensitivity right-hand side function [function]

Specifies a user-supplied function to evaluate the sensitivity right-hand
sides. This property is overloaded. The type of this function must be either
CVSensRhsFn (if it returns the righ-hand sides for all sensitivity systems
at once) or CVSensRhslFn (if it returns the right-hand side for the i-th
sensitivity). See SensRHStype. By default, CVODES uses an internal
difference-quotient function to approximate the sensitivity right-hand sides.

FSARhsType - Type of the sensitivity right-hand side function [All | One]
Specifies the type of the function which computes the sensitivity right-hand
sides. FSARhsType = ’All’ indicates that FSARhsFn is of type CVSensRhsFn.
FSARhsType = ’One’ indicates that FSARhsFn is of type CVSensRhs1Fn. Note that
either function type can be used with FSAMethod = ’Simultaneous’ or with
FSAMethod = ’Staggered’, but only FSARhsType = ’One’ is acceptable for
FSAMethod = ’Staggeredl’.

FSADQparam - Parameter for the DQ approx. of the sensi. RHS [scalar | 0.0]
Specifies the value which controls the selection of the difference-quotient
scheme used in evaluating the sensitivity right-hand sides. This property is
used only if CVODES will use difference-quotient approximations. The default
value 0.0 indicates the use of the second-order centered directional derivative
formula exclusively. Otherwise, the magnitude of FSADQparam and its sign
(positive or negative) indicates whether this switching is done with regard

to (centered or forward) finite differences, respectively.

ASANumDataPoints - Number of data points for ASA [integer | 100]
Specifies the (maximum) number of integration steps between two consecutive
check points.

ASAInterpType - Type of interpolation [Hermite]
Specifies the type of interpolation used for estimating the forward solution
during the backward integration phase. At this time, the only option is
’Hermite’, specifying cubic Hermite interpolation.

MonitorFn - User-provied monitoring function [function]
Specifies a function that is called after each successful integration step.
This function must have type CVMonitorFn. A simple monitoring function,
CVodeMonitor is provided with CVODES.

MonitorData - User-provied data for the monitoring function [struct]
Specifies a data structure that is passed to the Monitor function every time
it is called.

See also
CVRootFn, CVQuadRhsFn
CVSensRhsFn, CVSensRhsi1Fn
CVDenseJacFn, CVBandJacFn, CVJacTimesVecFn
CVPrecSetupFn, CVPrecSolveFn
CVGlocalFn, CVGcommFn
CVMonitorFn

CVodeMalloc

PURPOSE

CVodeMalloc allocates and initializes memory for CVODES.
SYNOPSIS

function [] = CVodeMalloc(fct,t0,y0,varargin)
DESCRIPTION

CVodeMalloc allocates and initializes memory for CVODES.
Usage: CVodeMalloc (ODEFUN, TO, YO [, OPTIONS [, DATA]])

ODEFUN is a function defining the ODE right-hand side: y’ = f(t,y).
This function must return a vector containing the current
value of the righ-hand side.

TO is the initial value of t.

YO is the initial condition vector y(t0).

OPTIONS is an (optional) set of integration options, created with
the CVodeSetOptions function.

DATA is (optional) problem data passed unmodified to all
user-provided functions when they are called. For example,
YD = ODEFUN(T,Y,DATA).

See also: CVRhsFn

CVodeMallocB

PURPOSE

CVodeMallocB allocates and initializes backward memory for CVODES.
SYNOPSIS

function [] = CVodeMallocB(fctB,tB0,yBO,varargin)

DESCRIPTION

CVodeMallocB allocates and initializes backward memory for CVODES.
Usage: CVodeMallocB (FCTB, TBO, YBO [, OPTIONSB])

FCTB is a function defining the adjoint ODE right-hand side.
This function must return a vector containing the current
value of the adjoint ODE righ-hand side.

TBO is the final value of t.

YBO is the final condition vector yB(tBO).

OPTIONSB is an (optional) set of integration options, created with
the CVodeSetOptions function.

See also: CVRhsFn

CVode

PURPOSE

CVode integrates the ODE.

SYNOPSIS

function [status,t,y,varargout] = CVode(tout,itask)
DESCRIPTION

CVode integrates the ODE.

Usage: [STATUS, T, Y] = CVode (TOUT, ITASK)
[STATUS, T, Y, YS] = CVode (TOUT, ITASK)
[STATUS, T, Y, YQ] = CVode (TOUT, ITASK)
[STATUS, T, Y, YQ, YS] = CVode (TOUT, ITASK)

If ITASK is ’Normal’, then the solver integrates from its current internal

T value to a point at or beyond TOUT, then interpolates to T = TOUT and returns
Y(TOUT). If ITASK is ’OneStep’, then the solver takes one internal time step
and returns in Y the solution at the new internal time. In this case, TOUT

is used only during the first call to CVode to determine the direction of
integration and the rough scale of the problem. In either case, the time
reached by the solver is returned in T. The ’NormalTstop’ and ’OneStepTstop’
modes are similar to ’Normal’ and ’OneStep’, respectively, except that the
integration never proceeds past the value tstop.

10

If quadratures were computed (see CVodeSetOptions), CVode will return their
values at T in the vector YQ.

If sensitivity calculations were enabled (see CVodeSetOptions), CVode will
return their values at T in the matrix YS.

On return, STATUS is one of the following:
0: CVode succeeded and no roots were found.
1: CVode succeded and returned at tstop.
2: CVode succeeded, and found one or more roots.
-1: Tllegal attempt to call before CVodeMalloc
—-2: One of the inputs to CVode is illegal. This includes the situation
when a component of the error weight vectors becomes < O during internal
time-stepping.
-4: The solver took mxstep internal steps but could not reach TOUT. The
default value for mxstep is 500.
-5: The solver could not satisfy the accuracy demanded by the user for some
internal step.
-6: Error test failures occurred too many times (MXNEF = 7) during one internal
time step

or occurred with |h| = hmin.
-7: Convergence test failures occurred too many times (MXNCF = 10) during one
internal time step or occurred with |h| = hmin.

-9: The linear solver’s setup routine failed in an unrecoverable manner.
-10: The linear solver’s solve routine failed in an unrecoverable manner.

See also CVodeSetOptions, CVodeGetstats

CVodeB

PURPOSE

CVodeB integrates the backward ODE.

SYNOPSIS

function [status,t,yB,varargout] = CVodeB(tout,itask)
DESCRIPTION

CVodeB integrates the backward ODE.

Usage: [STATUS, T, YB] = CVodeB (TOUT, ITASK)
[STATUS, T, YB, YQB] = CVodeB (TOUT, ITASK)

If ITASK is ’Normal’, then the solver integrates from its current internal

T value to a point at or beyond TOUT, then interpolates to T = TOUT and returns
YB(TOUT). If ITASK is ’OneStep’, then the solver takes one internal time step
and returns in YB the solution at the new internal time. In this case, TOUT

is used only during the first call to CVodeB to determine the direction of
integration and the rough scale of the problem. In either case, the time
reached by the solver is returned in T.

11

If quadratures were computed (see CVodeSet), CVodeB will return their
values at T in the vector YQB.

On return, STATUS is one of the following:
0: CVodeB succeeded and no roots were found.

-2: One of the inputs to CVodeB is illegal.

—-4: The solver took mxstep internal steps but could not reach TOUT.
The default value for mxstep is 500.

-5: The solver could not satisfy the accuracy demanded by the user for
some internal step.

-6: Error test failures occurred too many times (MXNEF = 7) during one

internal time step or occurred with |h| = hmin.
-7: Convergence test failures occurred too many times (MXNCF = 10) during
one internal time step or occurred with |h| = hmin.

-9: The linear solver’s setup routine failed in an unrecoverable manner.
-10: The linear solver’s solve routine failed in an unrecoverable manner.
-101: Illegal attempt to call before initializing adjoint sensitivity

(see CVodeMalloc).
-104: Illegal attempt to call before CVodeMallocB.
-108: Wrong value for TOUT.

See also CVodeSetOptions, CVodeGetstatsB

CVodeGetStats

PURPOSE

CVodeGetStats returns run statistics for the CVODES solver.
SYNOPSIS

function si = CVodeGetStats()

DESCRIPTION

CVodeGetStats returns run statistics for the CVODES solver.
Usage: STATS = CVodeGetStats

Fields in the structure STATS

o nst - number of integration steps

o nfe - number of right-hand side function evaluations
o nsetups - number of linear solver setup calls

o netf - number of error test failures

o nni - number of nonlinear solver iterations
o ncfn - number of convergence test failures

o qlast - last method order used

o qcur - current method order

o hOused - actual initial step size used

o hlast - last step size used

o hcur - current step size

o tcur - current time reached by the integrator

12

o RootInfo - strucutre with rootfinding information

o QuadInfo - structure with quadrature integration statistics

o LSInfo - structure with linear solver statistics

o FSAInfo - structure with forward sensitivity solver statistics

If rootfinding was requested, the structure RootInfo has the following fields

o nge - number of calls to the rootfinding function

o roots - array of integers (a value of 1 in the i-th component means that the
i-th rootfinding function has a root (upon a return with status=2 from
CVode) .

If quadratures were present, the structure QuadInfo has the following fields

o nfQe - number of quadrature integrand function evaluations
o netfQ - number of error test failures for quadrature variables

The structure LSinfo has different fields, depending on the linear solver used.
Fields in LSinfo for the ’Dense’ linear solver
o name - ’Dense’
o njeD - number of Jacobian evaluations
o nfeD - number of right-hand side function evaluations for difference-quotient
Jacobian approximation
Fields in LSinfo for the ’Diag’ linear solver
o name - ’Diag’
o nfeDI - number of right-hand side function evaluations for difference-quotient
Jacobian approximation
Fields in LSinfo for the ’Band’ linear solver
o name - ’Band’
o0 njeB - number of Jacobian evaluations
o nfeB - number of right-hand side function evaluations for difference-quotient

Jacobian approximation

Fields in LSinfo for the ’GMRES’ and ’BiCGStab’ linear solvers

o name - ’GMRES’ or ’BiCGStab’

o nli - number of linear solver iterations

o npe - number of preconditioner setups

o nps - number of preconditioner solve function calls

o ncfl - number of linear system convergence test failures

o0 njeSG - number of Jacobian-vector product evaluations

o nfeSG - number of right-hand side function evaluations for difference-quotient

Jacobian-vector product approximation

If forward sensitivities were computed, the structure FSAInfo has the
following fields

o nfSe - number of sensitivity right-hand side evaluations

13

o nfeS - number of right-hand side evaluations for difference-quotient
sensitivity right-hand side approximation

o nsetupsS - number of linear solver setups triggered by sensitivity variables
o netfS - number of error test failures for sensitivity variables

o nniS - number of nonlinear solver iterations for sensitivity variables

o ncfnS - number of convergence test failures due to sensitivity variables
o nniSTGR1 - number of nonlinear solver iterations for each sensitivity system
o ncfnSTGR1 - number of convergence test failures for each sensitivity system

CVodeGetStatsB

PURPOSE

CVodeGetStatsB returns run statistics for the backward CVODES solver.
SYNOPSIS

function si = CVodeGetStatsB()

DESCRIPTION

CVodeGetStatsB returns run statistics for the backward CVODES solver.
Usage: STATS = CVodeGetStatsB
Fields in the structure STATS

nst - number of integration steps

nfe - number of right-hand side function evaluations
nsetups - number of linear solver setup calls

netf - number of error test failures

nni - number of nonlinear solver iterations

ncfn - number of convergence test failures

qlast - last method order used

qcur - current method order

hOused - actual initial step size used

hlast - last step size used

hcur - current step size

tcur - current time reached by the integrator
QuadInfo - structure with quadrature integration statistics
LSInfo - structure with linear solver statistics

O O O O OO OO OO0 O o o o

The structure LSinfo has different fields, depending on the linear solver used.
If quadratures were present, the structure QuadInfo has the following fields

o nfQe - number of quadrature integrand function evaluations
o netfQ - number of error test failures for quadrature variables

Fields in LSinfo for the ’Dense’ linear solver
o name - ’Dense’

o njeD - number of Jacobian evaluations
o nfeD - number of right-hand side function evaluations for difference-quotient

14

Jacobian approximation
Fields in LSinfo for the ’Diag’ linear solver

o name - ’Diag’
o nfeDI - number of right-hand side function evaluations for difference-quotient
Jacobian approximation

Fields in LSinfo for the ’Band’ linear solver

o name - ’Band’

o njeB - number of Jacobian evaluations

o nfeB - number of right-hand side function evaluations for difference-quotient
Jacobian approximation

Fields in LSinfo for the ’GMRES’ and ’BiCGStab’ linear solvers

name - ’GMRES’ or ’BiCGStab’

nli - number of linear solver iterations

npe - number of preconditioner setups

nps - number of preconditioner solve function calls

ncfl - number of linear system convergence test failures

njeSG - number of Jacobian-vector product evaluations

nfeSG - number of right-hand side function evaluations for difference-quotient
Jacobian-vector product approximation

O O 0O O O 0 o

CVodeGet

PURPOSE

CVodeGet extracts data from the CVODES solver memory.
SYNOPSIS

function varargout = CVodeGet(key, varargin)
DESCRIPTION

CVodeGet extracts data from the CVODES solver memory.
Usage: RET = CVodeGet (KEY [, P1 [, P2] ... 1)

CVodeGet returns internal CVODES information based on KEY. For some values
of KEY, additional arguments may be required and/or more than one output is
returned.

KEY is a string and should be one of:

o DerivSolution - Returns a vector containing the K-th order derivative
of the solution at time T. The time T and order K must be passed through
the input arguments P1 and P2, respectively:
DKY = CVodeGet(’DerivSolution’, T, K)

o ErrorWeights - Returns a vector containing the error weights.
EWT = CVodeGet (’ErrorWeights’)

o CheckPointsInfo - Returns an array of structures with check point information.

15

CK = CVodeGet (’CheckPointInfo)

o CurrentCheckPoint - Returns the address of the active check point
ADDR = CVodeGet (’CurrentCheckPoint’);

o DataPointInfo - Returns information stored for interpolation at the I-th data
point in between the current check points. The index I must be passed through
the agument P1.

If the interpolation type was Hermite (see CVodeSetOptions), it returns two
vectors, Y and YD:
[Y, YD] = CVodeGet (’DataPointInfo’, I)

CVodeFree

PURPOSE

CVodeFree deallocates memory for the CVODES solver.
SYNOPSIS

function [] = CVodeFree()

DESCRIPTION

CVodeFree deallocates memory for the CVODES solver.

Usage: CVodeFree

CVodeMonitor

PURPOSE

CVodeMonitor is a simple monitoring function example.
SYNOPSIS

function [] = CVodeMonitor(call, time, sol, varargin)
DESCRIPTION

CVodeMonitor is a simple monitoring function example.
To use it, set the Monitor property in CVodeSetOptions to
’CVodeMonitor’ or to @CVodeMonitor.

With default settings, this function plots the evolution of the step
size, method order, and various counters.

Various properties can be changed from their default values by passing
to CvodeSetOptions, through the property ’MonitorData’, a structure
MONDATA with any of the following fields. If a field is not defined,
the corresponding default value is used.

Fields in MONDATA structure:
o stats [true | false]
If true, CVodeMonitor reports the evolution of the step size and
method order.

16

39

40

41

42

43

44

45

46

47

48

49

50

51

53

54

55

56

60

61

62

63

64

65

66

67

68

See

cntr [true | false]
If true, CVodeMonitor reports the evolution of the following counters:
nst, nfe, nni, netf, ncfn (see CVodeGetStats)
sol [true | false]
If true, CvodeMonitor plots all solution components (graphical mode only).
grph [true | false]
If true, CvodeMonitor plots the evolutions of the above quantities.
Otherwise, it prints to the screen.
updt [integer | 50]
CvodeMonitor update frequency.
select [array of integers]
To plot only particular solution components, specify their indeces in
the field select. If defined, it automatically sets sol=true. If not defined,
but sol=true, CVodeMonitor plots all components (graphical mode only).
xaxis [linear | log]
Type of the time axis for the stepsize, order, and counter plots
(graphical mode only).
dir [1] -1]
Specifies forward or backward integration.

also CVodeSetOptions, CVMonitorFn

SOURCE CODE

function [] = CVodeMonitor(call, time, sol, varargin)

% Radu Serban <radu@llnl.gov>
% Copyright (c) 2005, The Regents of the University of California.
% $Revision$Date$

persistent data

persistent first

persistent hfl hf2 npl

persistent i

persistent t y h q nst nfe nni netf ncfn

if call = 0

if nargin > 3
data = varargin{1l};

end

data = initialize_data (data, length(sol));

first = true;
if data.grph
npl = 0;

if data.stats

npl = npl + 2;

end
if data.cntr

npl = npl + 1;

end
if npl "= 0

hfl = figure;

17

69

70

71

72

73

T4

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

end
end
if data.sol
hf2 = figure;
colormap (data.map);
end
i=1;
t = zeros(1,data.updt);
if data.stats
h = zeros(1,data.updt);
q = zeros (1,data.updt);
end
if data.cntr
nst = zeros(1,data.updt)
nfe = zeros(1,data.updt);
nni = zeros(1l,data.updt);
t);
t)

)

netf = zeros(1,data.upd
ncfn = zeros(1,data.updt);
end
if data.sol
N = length (data.select);
y = zeros (N, data.updt);
end

)

return;
end
% Load current statistics

if data.dir =1

si = CVodeGetStats;
else

si = CVodeGetStatsB;
end

t(i)

if data.stats
h(i) = si.hlast;
q(i) = si.qlast;
end

si.tcur;

if data.cntr

nst(i) = si.nst;
nfe (i) = si.nfe;
nni(i) = si.nni;
netf(i) = si.netf;
ncefn (i) = si.ncfn;
end
if data.sol

N = length (data.select);

18

173

174

175

176

for j = 1:N
y(j,i) = sol(data.select(j));
end
else
N = 0;
end

% Finalize post

if call = 2
if data.grph
graphical _final(i,...
hfl, npl, data.stats, data.cntr, data.sol, data.dir ,...
t, h, q, nst, nfe, nni, netf, ncfn,...
hf2, y, N, data.select);
else
text_final (i,data.stats ,data.cntr ,t,h,q,nst,nfe,nni,netf,ncfn);
end
return
end

% Is it time to post?
if i = data.updt

if first
if data.grph
graphical_init (hfl, npl, data.stats, data.cntr, data.sol, data.dir,...
t, h, q, nst, nfe, nni, netf, ncfn,...
hf2, y, N, data.xaxis);

else
text_update (data.stats ,data.cntr ,t,h,q,nst,nfe ,nni,netf ncfn);
end
first = false;
else

if data.grph

graphical _update (hfl, npl, data.stats, data.cntr, data.sol, data.dir,...

t, h, q, nst, nfe, nni, netf, ncfn,...

hf2 | y, N);
else
text_update (data.stats ,data.cntr ,t,h,q,nst ,nfe ,nni,netf , ncfn);
end
end
i=1;
else
i=1+4+1;
end
%
function data = initialize_data (data, N)

19

if “isfield (data, ’grph’)
data.grph = true;

end

if “isfield (data, updt’)
data.updt = 50;

end

if “isfield (data, stats’)
data.stats = true;

end

if “isfield (data, ’cntr’)
data.cntr = true;

end

if “isfield (data, ’sol’)
data.sol = false;

end

if “isfield (data, map’)
data.map = ’default ’;

end

if “isfield (data, select’)
data.select = [1:N];

else
data.sol = true;

end

if “isfield (data,’ xaxis’)
data.xaxis = ’log’;

end

if “isfield (data,’dir”)
data.dir = 1;

end

if “data.grph
data.sol = false;
end

function [] = graphical_init (hfl, npl,

hf2 , y, N, xaxis)

t, h, q,
if npl "= 0
figure (hfl);
pl = 0;
end

% Step size and order
if stats
pl = pl+1;
subplot (npl,1,pl)
semilogy (t,abs(h),’=");
if stremp(xaxis, 'log’)
set (gca, ’XScale’,"log’);
end
hold on;

20

stats ,

cntr ,

nst , nfe, nni,

sol ,

netf, ncfn,...

dir , ...

273

274

275

276

277

278

279

281

282

283

284

box on;

grid on;

xlabel (7t 7);
ylabel (7| Step.size|’);

pl = pl+1;
subplot (npl,1,pl)
plOt(t7Qa ’_7);
if stremp(xaxis, 'log’)
set (gca, 'XScale’,’log’);
end
hold on;
box on;
grid on;
xlabel (7t 7);
ylabel (’Order’);
end

% Counters

if cntr
pl = pl+1;
subplot (npl,1,pl)
semilogy (t,nst, 'k—");
hold on;
semilogy (t,nfe , "b—")
semilogy (t,nni, 'r—");
semilogy (t,netf, 'g—’
semilogy (t,ncfn, "c—
if stremp(xaxis, 'log

set (geca, 'XScale’,’log’);

end
box on;
grid on;
xlabel (7t 7);
ylabel (" Counters’);

end

% Solution components
if sol

figure (hf2);

map = colormap;

ncols = size (map,1);
hold on;
for i = 1:N

hp = plot (t,y(i,:), =");
ic = 14+(i—1)*floor (ncols/N);
set (hp, "Color’ ;map(ic ,:));
end
if stremp(xaxis, ’'log’)
set (gea, 'XScale’,’log’);
end
box on;
grid on;
xlabel (7t 7);

ylabel ("y");
title (’Solution’);

end
drawnow ;
V4
function [] = graphical_update(hfl, npl, stats, cntr, sol, dir,...
t, h, q, nst, nfe, nni, netf, ncfn,...

hf2, y, N)

if npl "= 0
figure (hf
pl = 0;

end

1);

% Step size and order

if stats

pl = pl+1;

subplot (npl,1,pl)

hec = get(gca, ’Children’);

xd = [get (hc, XData’) t];

yd = [get (hc, 'YData’) abs(h)];

if length(xd) "= length (yd)

disp('h');

end

set (he, ’'XData’, xd, ’YData’, yd);

pl = pl+1;

subplot (npl,1,pl)

he = get(gca,’ Children’);

xd = [get (he, XData’) t];

yd = [get (he, YData’) q];

if length(xd) "= length (yd)

disp(’q’);

end

set (he, 'XData’, xd, ’YData’', yd);
end

% Counters
if cntr
pl = pl+1;
subplot (npl,1,pl)
hec = get(gca, ’ Children’);
% Attention: Children are loaded in reverse order!
xd = [get (hc(1l), XData’) t];
yd = [get (hc(1),’YData’) ncfn];

set (he (1), ’XData’, xd, ’YData’, yd);
yd = [get (hc(2), YData’) netf];
set (he(2), 'XData’, xd, ’YData’, yd);
yd = [get (hc(3), ’YData’) nni];
set (he(3), ’XData’, xd, ’YData’, yd);
yd = [get (hc(4), YData’) nfe];

22

339

340

341

342

343

344

346

347

348

349

351

352

353

354

356

357

358

359

361

362

363

364

366

367

368

369

371

372

373

374

376

377

378

379

380

381

382

383

384

385

386

387

389

390

391

392

set (he(4), 'XData’, xd, ’YData’, yd);

yd = [get (he(5), YData’) nst];

set (he(5), 'XData’, xd, ’YData’, yd);
end

% Solution components
if sol

figure (hf2);
hc = get(gca, ’ Children’);
xd = [get (hc (1), XData’) t];
% Attention: Children are loaded in reverse order!
for i = 1:N
yd = [get (he(i), YData’) y(N-i+1,:)];
set (he(i), 'XData’, xd, ’YData’, yd);
end
end
drawnow ;
%
function [] = graphical_final(n, hfl, npl, stats, cntr, sol, dir,...
t, h, q, nst, nfe, nni, netf, ncfn,...
hf2, y, N, select)
if npl "= 0
figure (hfl);
pl = 0;
end

% Step size and order
if stats
pl = pl+1;
subplot (npl,1,pl)
hc = get(gca, ’ Children’);
xd = [get (hc, 'XData’) t(1:n—1)];
yd = [get (hc, 'YData’) abs(h(l:n—1))];
set (he, 'XData’, xd, ’YData’', yd);
% xlim = get(geca, XLim’);
% set(geca,’ XLim’,[xlim (1) t(n—1)]);

pl = pl+1;
subplot (npl,1,pl)
he = get(gca, ’ Children’);
xd = [get (hc, XData’) t(1:n—1)];
yd = [get (hc, YData’) q(1l:n—1)];
set (he, 'XData’, xd, ’YData’', yd);
% xlim = get(geca, XLim’);
% set(geca, XLim’,[xlim (1) t(n—1)]);
ylim = get(gca, YLim’);
set (gea, 'YLim’ ,[ylim(1)—1 ylim (2)4+1]);
end

% Counters

23

if cntr

pl = pl+1;

subplot (npl,1,pl)

he = get(gca, Children’);

xd = [get (hc(1l),’XData’) t(l:n—1)];
yd = [get (he(1),’YData’) ncfn (1:n—1)];
set (he (1), 'XData’, xd, ’YData’, yd);
yd = [get(hc(2), ’YData’) netf(l:n—1)];
set (he(2), ’XData’, xd, ’YData’, yd);
yd = [get (hc(3), YData’) nni (l:n—1)];
set (he(3), ’XData’, xd, ’YData’, yd);
yd = [get (hc(4), YData’) nfe(l:n—1)];
set (he(4), 'XData’, xd, ’YData’, yd);
yd = [get (hc(5), ’YData’) nst(l:n—1)];
set (he(5), ’XData’, xd, ’YData’, yd);

% xlim = get(gca,’ XLim’);
% set(geca, XLim’

Jxlim (1) t(n—1)]);

legend (’nst’, ’nfe’,’nni’, 'netf’, 'nefn’ ,2);
end
% Solution components
if sol
figure (hf2);
hc = get(gca, ’Children’);
xd = [get (hc(1),’XData’) t(l:n—1)];
% Attention: Children are loaded in reverse order!
for i = 1:N
yd = [get(hc(i), YData’) y(N-i+1,1:n—1)];
set (he(i), 'XData’, xd, ’YData’, yd);
cstring{i} = sprintf('y_{%d}’,1);
end
legend (cstring);
end
drawnow ;
%

function [] text_init (stats ,

cntr ,t,h,q,nst ,nfe ,nni,netf ,ncfn)

[l =

n = length(t);
for i = 1:n
if stats
fprintf(’%8.3e.%12.6e_%1d._|
end
if cntr

function text_update (stats

fprintf ('%5d._%5d -%5d -%5d -%5d \n’

else
fprintf(’'\n’);
end

,cntr ,t,h,q,nst,nfe ,nni,netf, ncfn)

t(1),h(i),q(i));

y,nst (i) ,nfe(i),nni(i),netf(i),ncfn(i));

24

447

448

449

450

451

452

453

455

456

457

458

460

461

462

464

end

fprintf ('——— \n’);
%
function [] = text_final(n,stats ,cntr,t,h,q,nst,nfe nni,netf, ncfn)
for i = 1:n-1
if stats
fprintf(’%8.3e_.%12.6e_%1d_|.",t(i),h(i),q(i));
end
if cntr
fprintf ("%5d._%5d -%5d -%5d .%5d\n’ ,nst (i) ,nfe(i),nni(i),netf(i),ncfn(i));
else
fprintf(’'\n’);
end
end
fprintf ('———— \n’);

25

2.2 Function types

CVBandJacFn

PURPOSE

CVBandJacFn - type for user provided banded Jacobian function.
SYNOPSIS

This is a script file.

DESCRIPTION

CVBandJacFn - type for user provided banded Jacobian function.
IVP Problem

The function BJACFUN must be defined as

FUNCTION J = BJACFUN(T,Y,FY)
and must return a matrix J corresponding to the banded Jacobian of f(t,y).
The input argument FY contains the current value of f(t,y).
If a user data structure DATA was specified in CVodeMalloc, then
BJACFUN must be defined as

FUNCTION [J, NEW_DATA] = BJACFUN(T,Y,FY,DATA)
If the local modifications to the user data structure are needed in
other user-provided functions then, besides setting the matrix J,
the BJACFUN function must also set NEW_DATA. Otherwise, it should
set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to
unnecessary copying) .

Adjoint Problem

The function BJACFUNB must be defined either as

FUNCTION JB = BJACFUNB(T,Y,YB,FYB)
or as

FUNCTION [JB, NEW_DATA] = BJACFUNB(T,Y,YB,FYB,DATA)
depending on whether a user data structure DATA was specified in
CVodeMalloc. In either case, it must return the matrix JB, the
Jacobian of fB(t,y,yB), with respect to yB. The input argument
FYB contains the current value of f(t,y,yB).

See also CVodeSetOptions

See the CVODES user guide for more informaiton on the structure of
a banded Jacobian.

NOTE: BJACFUN and BJACFUNB are specified through the property
JacobianFn to CVodeSetOptions and are used only if the property
LinearSolver was set to ’Band’.

CVDenseJacFn

26

PURPOSE

CVDenseJacFn - type for user provided dense Jacobian function.
SYNOPSIS

This is a script file.

DESCRIPTION

CVDenseJacFn - type for user provided dense Jacobian function.

IVP Problem

The function DJACFUN must be defined as
FUNCTION J = DJACFUN(T,Y,FY)

and must return a matrix J corresponding to the Jacobian of f(t,y).

The input argument FY contains the current value of f(t,y).
If a user data structure DATA was specified in CVodeMalloc, then
DJACFUN must be defined as

FUNCTION [J, NEW_DATA] = DJACFUN(T,Y,FY,DATA)

If the local modifications to the user data structure are needed in

other user-provided functions then, besides setting the matrix J,
the DJACFUN function must also set NEW_DATA. Otherwise, it should
set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to
unnecessary copying) .

Adjoint Problem

The function DJACFUNB must be defined either as

FUNCTION JB = DJACFUNB(T,Y,YB,FYB)
or as

FUNCTION [JB, NEW_DATA] = DJACFUNB(T,Y,YB,FYB,DATA)
depending on whether a user data structure DATA was specified in
CVodeMalloc. In either case, it must return the matrix JB, the
Jacobian of fB(t,y,yB), with respect to yB. The input argument
FYB contains the current value of f(t,y,yB).

See also CVodeSetOptions
NOTE: DJACFUN and DJACFUNB are specified through the property

JacobianFn to CVodeSetOptions and are used only if the property
LinearSolver was set to ’Dense’.

CVGcommFn

PURPOSE

CVGcommFn - type for user provided communication function (BBDPre).
SYNOPSIS

This is a script file.

DESCRIPTION

27

CVGcommFn - type for user provided communication function (BBDPre).
IVP Problem

The function GCOMFUN must be defined as

FUNCTION []1 = GCOMFUN(T,Y)
and can be used to perform all interprocess communication necessary
to evaluate the approximate right-hand side function for the BBDPre
preconditioner module.
If a user data structure DATA was specified in CVodeMalloc, then
GCOMFUN must be defined as

FUNCTION [NEW_DATA] = GCOMFUN(T,Y,DATA)
If the local modifications to the user data structure are needed
in other user-provided functions then the GCOMFUN function must also
set NEW_DATA. Otherwise, it should set NEW_DATA=[] (do not set
NEW_DATA = DATA as it would lead to unnecessary copying).

Adjoint Problem

The function GCOMFUNB must be defined either as
FUNCTION [] = GCOMFUNB(T,Y,YB)
or as
FUNCTION [NEW_DATA] = GCOMFUNB(T,Y,YB,DATA)
depending on whether a user data structure DATA was specified in
CVodeMalloc.

See also CVGlocalFn, CVodeSetOptions

NOTES:
GCOMFUN and GCOMFUNB are specified through the GcommFn property in
CVodeSetOptions and are used only if the property PrecModule is set
to ’BBDPre’.

Each call to GCOMFUN is preceded by a call to the RHS function
ODEFUN with the same arguments T and Y (and YB in the case of GCOMFUNB).
Thus GCOMFUN can omit any communication done by ODEFUN if relevant
to the evaluation of G by GLOCFUN. If all necessary communication
was done by ODEFUN, GCOMFUN need not be provided.

CVGlocalFn

PURPOSE

CVGlocalFn - type for user provided RHS approximation function (BBDPre).
SYNOPSIS

This is a script file.

DESCRIPTION

CVGlocalFn - type for user provided RHS approximation function (BBDPre) .

IVP Problem

28

The function GLOCFUN must be defined as

FUNCTION G = GLOCFUN(T,Y)
and must return a vector G corresponding to an approximation to f(t,y)
which will be used in the BBDPRE preconditioner module. The case where
G is mathematically identical to F is allowed.
If a user data structure DATA was specified in CVodeMalloc, then
GLOCFUN must be defined as

FUNCTION [G, NEW_DATA] = GLOCFUN(T,Y,DATA)
If the local modifications to the user data structure are needed
in other user-provided functions then, besides setting the vector G,
the GLOCFUN function must also set NEW_DATA. Otherwise, it should set
NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to
unnecessary copying) .

Adjoint Problem

The function GLOCFUNB must be defined either as

FUNCTION GB = GLOCFUNB(T,Y,YB)
or as

FUNCTION [GB, NEW_DATA] = GLOCFUNB(T,Y,YB,DATA)
depending on whether a user data structure DATA was specified in
CVodeMalloc. In either case, it must return the vector GB
corresponding to an approximation to fB(t,y,yB).

See also CVGcommFn, CVodeSetOptions
NOTE: GLOCFUN and GLOCFUNB are specified through the GlocalFn property

in CVodeSetOptions and are used only if the property PrecModule
is set to ’BBDPre’.

CVMonitorFn

PURPOSE

CVMonitorFn - type for user provided monitoring function.
SYNOPSIS

This is a script file.

DESCRIPTION

CVMonitorFn - type for user provided monitoring function.

The function MONFUN must be defined as

FUNCTION [] = MONFUN(CALL, T, Y, SSTATS)
It is called after every internal CVode step and can be used to
monitor the progress of the solver. MONFUN is called with CALL=0
from CVodeMalloc at which time it should initialize itself and it
is called with CALL=2 from CVodeFree. Otherwise, CALL=1.

It receives as arguments the current time T, solution vector Y,
and solver statistics structure SSTATS (same as if obtained by

29

a call to CVodeGetStats or CVodeGetStatsB).

If additional data is needed inside MONFUN, it must be defined

- FUNCTION [] = MONFUN(CALL, T, Y, SSTATS, MONDATA)

A sample monitoring function, CVodeMonitor, is provided with CVODES.
See also CVodeSetOptions, CVodeMonitor

NOTES:

MONFUN is specified through the MonitorFn property in CVodeSetOptions.

If this property is not set, or if it is empty, MONFUN is not used.
MONDATA is specified through the MonitorData property in CVodeSetOptions.

CVQuadRhsFn

PURPOSE

CVQuadRhsFn - type for user provided quadrature RHS function.
SYNOPSIS

This is a script file.

DESCRIPTION

CVQuadRhsFn - type for user provided quadrature RHS function.
IVP Problem

The function ODEQFUN must be defined as

FUNCTION YQD = ODEQFUN(T,Y)
and must return a vector YQD corresponding to fQ(t,y), the integrand
for the integral to be evaluated.
If a user data structure DATA was specified in CVodeMalloc, then
ODEQFUN must be defined as

FUNCTION [YQD, NEW_DATA] = ODEQFUN(T,Y,DATA)
If the local modifications to the user data structure are needed in
other user-provided functions then, besides setting the vector YQD,
the ODEQFUN function must also set NEW_DATA. Otherwise, it should set
NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to
unnecessary copying) .

Adjoint Problem

The function ODEQFUNB must be defined either as

FUNCTION YQBD = ODEQFUNB(T,Y,YB)
or as

FUNCTION [YQBD, NEW_DATA] = ODEQFUNB(T,Y,YB,DATA)
depending on whether a user data structure DATA was specified in
CVodeMalloc. In either case, it must return the vector YQBD
corresponding to fQB(t,y,yB), the integrand for the integral to be

30

evaluated on the backward phase.
See also CVodeSetOptions
NOTE: ODEQFUN and ODEQFUNB are specified through the property

QuadRhsFn to CVodeSetOptions and are used only if the property
Quadratures was set to ’on’.

CVRhsFn

PURPOSE

CVRhsFn - type for user provided RHS type
SYNOPSIS

This is a script file.

DESCRIPTION

CVRhsFn - type for user provided RHS type
IVP Problem

The function ODEFUN must be defined as

FUNCTION YD = ODEFUN(T,Y)
and must return a vector YD corresponding to f(t,y).
If a user data structure DATA was specified in CVodeMalloc, then
ODEFUN must be defined as

FUNCTION [YD, NEW_DATA] = ODEFUN(T,Y,DATA)
If the local modifications to the user data structure are needed
in other user-provided functions then, besides setting the vector YD,
the ODEFUN function must also set NEW_DATA. Otherwise, it should set
NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to
unnecessary copying) .

Adjoint Problem

The function ODEFUNB must be defined either as

FUNCTION YBD = ODEFUNB(T,Y,YB)
or as

FUNCTION [YBD, NEW_DATA] = ODEFUNB(T,Y,YB,DATA)
depending on whether a user data structure DATA was specified in
CVodeMalloc. In either case, it must return the vector YBD
corresponding to fB(t,y,yB).

See also CVodeMalloc, CVodeMallocB

NOTE: ODEFUN and ODEFUNB are specified through the CVodeMalloc and
CVodeMallocB functions, respectively.

CVRootFn

31

PURPOSE

CVRootFn - type for user provided root-finding function.
SYNOPSIS

This is a script file.

DESCRIPTION

CVRootFn - type for user provided root-finding function.

The function ROOTFUN must be defined as

FUNCTION G = ROOTFUN(T,Y)
and must return a vector G corresponding to g(t,y).
If a user data structure DATA was specified in CVodeMalloc, then
ROOTFUN must be defined as

FUNCTION [G, NEW_DATA] = ROOTFUN(T,Y,DATA)
If the local modifications to the user data structure are needed in
other user-provided functions then, besides setting the vector G,
the ROOTFUN function must also set NEW_DATA. Otherwise, it should
set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to
unnecessary copying) .

See also CVodeSetOptions
NOTE: ROOTFUN is specified through the RootsFn property in

CVodeSetOptions and is used only if the property NumRoots is a
positive integer.

CVSensRhs1Fn

PURPOSE

CVSensRhs1Fn - type for user provided sensitivity RHS function (single).
SYNOPSIS

This is a script file.

DESCRIPTION

CVSensRhs1Fn - type for user provided sensitivity RHS function (single).

The function ODES1FUN must be defined as

FUNCTION YSD = ODES1FUN(IS,T,Y,YD,YS)
and must return a vector YSD corresponding to fS_is(t,y,yS).
If a user data structure DATA was specified in CVodeMalloc, then
ODES1FUN must be defined as

FUNCTION [YSD, NEW_DATA] = ODES1FUN(IS,T,Y,YD,YS,DATA)
If the local modifications to the user data structure are needed in
other user-provided functions then, besides setting the vector YSD,
the ODES1FUN function must also set NEW_DATA. Otherwise, it should
set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to
unnecessary copying) .

32

See also CVodeSetOptions

NOTE: ODES1FUN is specified through the property FSARhsFn to CVodeSetOptions
and is used only if the property SensiAnalysis was set to ’FSA’ and if the
property FSARhsType was set to ’One’.

CVSensRhsFn

PURPOSE

CVSensRhsFn - type for user provided sensitivity RHS function.

SYNOPSIS

This is a script file.

DESCRIPTION

CVSensRhsFn - type for user provided sensitivity RHS function.

The function ODESFUN must be defined as

FUNCTION YSD = ODESFUN(T,Y,YD,YS)
and must return a matrix YSD corresponding to £S(t,y,yS).
If a user data structure DATA was specified in CVodeMalloc, then
ODESFUN must be defined as

FUNCTION [YSD, NEW_DATA] = ODESFUN(T,Y,YD,YS,DATA)
If the local modifications to the user data structure are needed in
other user-provided functions then, besides setting the matrix YSD,
the ODESFUN function must also set NEW_DATA. Otherwise, it should
set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to
unnecessary copying) .

See also CVodeSetOptions
NOTE: ODESFUN is specified through the property FSARhsFn to CVodeSetOptions

and is used only if the property SensiAnalysis was set to ’FSA’ and if the
property FSARhsType was set to ’All’.

CVJacTimesVecFn

PURPOSE

CVJacTimesVecFn - type for user provided Jacobian times vector function.

SYNOPSIS

This is a script file.

DESCRIPTION

33

CVJacTimesVecFn - type for user provided Jacobian times vector function.
IVP Problem

The function JTVFUN must be defined as

FUNCTION JV = JTVFUN(T,Y,FY,V)
and must return a vector JV corresponding to the product of the
Jacobian of f(t,y) with the vector v.
The input argument FY contains the current value of f(t,y).
If a user data structure DATA was specified in CVodeMalloc, then
JTVFUN must be defined as

FUNCTION [JV, NEW_DATA] = JTVFUN(T,Y,FY,V,DATA)
If the local modifications to the user data structure are needed in
other user-provided functions then, besides setting the vector JV,
the JTVFUN function must also set NEW_DATA. Otherwise, it should set
NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to
unnecessary copying) .

Adjoint Problem

The function JTVFUNB must be defined either as

FUNCTION JVB = JTVFUNB(T,Y,YB,FYB,VB)
or as

FUNCTION [JVB, NEW_DATA] = JTVFUNB(T,Y,YB,FYB,VB,DATA)
depending on whether a user data structure DATA was specified in
CVodeMalloc. In either case, it must return the vector JVB, the
product of the Jacobian of fB(t,y,yB) with respect to yB and a vector
vB. The input argument FYB contains the current value of f(t,y,yB).

See also CVodeSetOptions
NOTE: JTVFUN and JTVFUNB are specified through the property

JacobianFn to CVodeSetOptions and are used only if the property
LinearSolver was set to ’GMRES’ or ’BiCGStab’.

CVPrecSetupFn

PURPOSE

CVPrecSetupFn - type for user provided preconditioner setup function.
SYNOPSIS

This is a script file.

DESCRIPTION

CVPrecSetupFn - type for user provided preconditioner setup function.

The user-supplied preconditioner setup function PSETFUN and
the user-supplied preconditioner solve function PSOLFUN
together must define left and right preconditoner matrices
P1 and P2 (either of which may be trivial), such that the
product P1*P2 is an approximation to the Newton matrix

34

M =1 - gamma*J. Here J is the system Jacobian J = df/dy,
and gamma is a scalar proportional to the integration step
size h. The solution of systems P z = r, with P = P1 or P2,
is to be carried out by the PrecSolve function, and PSETFUN
is to do any necessary setup operations.

The user-supplied preconditioner setup function PSETFUN

is to evaluate and preprocess any Jacobian-related data
needed by the preconditioner solve function PSOLFUN.

This might include forming a crude approximate Jacobian,

and performing an LU factorization on the resulting
approximation to M. This function will not be called in
advance of every call to PSOLFUN, but instead will be called
only as often as necessary to achieve convergence within the
Newton iteration. If the PSOLFUN function needs no
preparation, the PSETFUN function need not be provided.

For greater efficiency, the PSETFUN function may save
Jacobian-related data and reuse it, rather than generating it
from scratch. In this case, it should use the input flag JOK
to decide whether to recompute the data, and set the output
flag JCUR accordingly.

Each call to the PSETFUN function is preceded by a call to
ODEFUN with the same (t,y) arguments. Thus the PSETFUN
function can use any auxiliary data that is computed and
saved by the ODEFUN function and made accessible to PSETFUN.

IVP Problem

The function PSETFUN must be defined as

FUNCTION [JCUR, ERR] = PSETFUN(T,Y,FY,JOK,GAMMA)
and must return a logical flag JCUR (true if Jacobian information
was recomputed and false if saved data was reused). If PSETFUN
was successful, it must return ERR=0. For a recoverable error (in
which case the setup will be retried) it must set ERR to a positive
integer value. If an unrecoverable error occurs, it must set ERR
to a negative value, in which case the integration will be halted.
The input argument FY contains the current value of f(t,y).
If the input logical flag JOK is false, it means that
Jacobian-related data must be recomputed from scratch. If it is true,
it means that Jacobian data, if saved from the previous PSETFUN call
can be reused (with the current value of GAMMA).

If a user data structure DATA was specified in CVodeMalloc, then
PSETFUN must be defined as

FUNCTION [JCUR, ERR, NEW_DATA] = PSETFUN(T,Y,FY,JOK,GAMMA,DATA)
If the local modifications to the user data structure are needed in
other user-provided functions then, besides setting the flags JCUR
and ERR, the PSETFUN function must also set NEW_DATA. Otherwise, it
should set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead
to unnecessary copying).

Adjoint Problem

35

The function PSETFUNB must be defined either as

FUNCTION [JCURB, ERR] = PSETFUNB(T,Y,YB,FYB,JOK,GAMMAB)
or as

FUNCTION [JCURB, ERR, NEW_DATA] = PSETFUNB(T,Y,YB,FYB,JOK,GAMMAB,DATA)
depending on whether a user data structure DATA was specified in
CVodeMalloc. In either case, it must return the flags JCURB and ERR.

See also CVPrecSolveFn, CVodeSetOptions

NOTE: PSETFUN and PSETFUNB are specified through the property
PrecSetupFn to CVodeSetOptions and are used only if the property
LinearSolver was set to ’GMRES’ or ’BiCGStab’ and if the property
PrecType is not ’None’.

CVPrecSolveFn

PURPOSE

CVPrecSolveFn - type for user provided preconditioner solve function.
SYNOPSIS

This is a script file.

DESCRIPTION

CVPrecSolveFn - type for user provided preconditioner solve function.

The user-supplied preconditioner solve function PSOLFN

is to solve a linear system P z = r in which the matrix P is
one of the preconditioner matrices P1 or P2, depending on the
type of preconditioning chosen.

IVP Problem

The function PSOLFUN must be defined as

FUNCTION [Z, ERR] = PSOLFUN(T,Y,FY,R)
and must return a vector Z containing the solution of Pz=r.
If PSOLFUN was successful, it must return ERR=0. For a recoverable
error (in which case the step will be retried) it must set ERR to a
positive value. If an unrecoverable error occurs, it must set ERR
to a negative value, in which case the integration will be halted.
The input argument FY contains the current value of f(t,y).

If a user data structure DATA was specified in CVodeMalloc, then
PSOLFUN must be defined as

FUNCTION [Z, ERR, NEW_DATA] = PSOLFUN(T,Y,FY,R,DATA)
If the local modifications to the user data structure are needed in
other user-provided functions then, besides setting the vector Z and
the flag ERR, the PSOLFUN function must also set NEW_DATA. Otherwise,
it should set NEW_DATA=[] (do not set NEW_DATA = DATA as it would
lead to unnecessary copying).

36

Adjoint Problem

The function PSOLFUNB must be defined either as

FUNCTION [ZB, ERR] = PSOLFUNB(T,Y,YB,FYB,RB)
or as

FUNCTION [ZB, ERR, NEW_DATA] = PSOLFUNB(T,Y,YB,FYB,RB,DATA)
depending on whether a user data structure DATA was specified in
CVodeMalloc. In either case, it must return the vector ZB and the
flag ERR.

See also CVPrecSetupFn, CVodeSetOptions
NOTE: PSOLFUN and PSOLFUNB are specified through the property
PrecSolveFn to CVodeSetOptions and are used only if the property

LinearSolver was set to ’GMRES’ or ’BiCGStab’ and if the property
PrecType is not ’None’.

37

3 MATLAB Interface to KINSOL

The MATLAB interface to KINSOL provides access to all functionality of the KINSOL solver.

The interface consists of 5 user-callable functions. The user must provide several required and
optional user-supplied functions which define the problem to be solved. The user-callable functions
and the types of user-supplied functions are listed in Table 2 and fully documented later in this
section. For more in depth details, consult also the KINSOL user guide [1].

To illustrate the use of the KINSOL MATLAB interface, several example problems are provided with
SUNDIALSTB, both for serial and parallel computations. Most of them are MATLAB translations of
example problems provided with KINSOL.

Table 2: KINSOL MATLAB interface functions

2 KINSetOptions | creates an options structure for KINSOL.

o KINMalloc | allocates and initializes memory for KINSOL.

g KINSol | solves the nonlinear problem.

=z KINGetStats | returns statistics for the KINSOL solver.
KINFree | deallocates memory for the KINSOL solver.

2 KINSysFn | system function

£ KINDenseJacFn | dense Jacobian function

: KINJactimesVecFn | Jacobian times vector function

2 KINPrecSetupFn | preconditioner setup function

= KINPrecSolveFn | preconditioner solve function

= KINGlocalFn | system approximation function (BBDPre)

KINGcommFn | communication function (BBDPre)

38

3.1 Interface functions

KINSetOptions

PURPOSE

KINSetOptions creates an options structure for KINSOL.
SYNOPSIS

function options = KINSetOptions(varargin)
DESCRIPTION

KINSetOptions creates an options structure for KINSOL.
Usage:

options = KINSetOptions(’NAME1’,VALUE1, ’NAME2’,VALUE2,...) creates a KINSOL
options structure options in which the named properties have the

specified values. Any unspecified properties have default values. It is
sufficient to type only the leading characters that uniquely identify the
property. Case is ignored for property names.

options = KINSetOptions(oldoptions,’NAME1’,VALUE1l,...) alters an existing
options structure oldoptions.

options = KINSetOptions(oldoptions,newoptions) combines an existing options
structure oldoptions with a new options structure newoptions. Any new
properties overwrite corresponding old properties.

KINSetOptions with no input arguments displays all property names and their
possible values.

KINSetOptions properties
(See also the KINSOL User Guide)

MaxNumIter - maximum number of nonlinear iterations [scalar | 200]

Specifies the maximum number of iterations that the nonlinar solver is allowed
to take.

MaxNumSetups - [scalar | 10]

Specifies the maximum number of nonlinear iterations between calls to the
linear solver setup function (i.e. preconditioner evaluation for an iterative
linear solver).

MaxNumBetaFails - maximum number of beta-condition failures [scalar | 10]
Specifies the maximum number of beta-condiiton failures in the line search
algorithm.

EtaForm - Inexact Newton method [Constant | Type2 | Typel]

Specifies the method for computing the eta coefficient used in the calculation
of the linear solver convergence tolerance (used only if strategy=’InexactNEwton’
in the call to KINSol):

lintol = (eta + eps)*||fscalexf(y)||_L2
which is the used to check if the following inequality is satisfied:

39

| |fscalex(£(y)+J(y)*p) | |_L2 <= lintol
Valid choices are:
[TEGoGe+)) L2 = [£ (y_k)+I(y_k)*p_k||_L2 |
EtaForm=’Typel’ eta = ———————————————————
[1£(y_k)|I_L2

[£¢y_(&+1))|1_L2]"alpha
EtaForm="Type2’ eta = gamma * [—-—-—-—-——-——-——-—-]
[IfG itz]
EtaForm=’Constant’
Eta - constant value for eta [scalar | 0.1]
Specifies the constant value for eta in the case EtaForm=’Constant’.
EtaAlpha - alpha parameter for eta [scalar | 2.0]
Specifies the parameter alpha in the case EtaForm=’Type2’
EtaGamma - gamma parameter for eta [scalar | 0.9]
Specifies the parameter gamma in the case EtaForm=’Type2’
MaxNewtonStep - maximum Newton step size [scalar | 0.0]
Specifies the maximum allowable value of the scaled length of the Newton step.
FuncRelErr - relative residual error [scalar | eps]
Specifies the realative error in computing f(y) when used in difference
quotient approximation of matrix-vector product J(y)*v.
FuncNormTol - residual stopping criteria [scalar | eps~(1/3)]
Specifies the stopping tolerance on ||fscale*ABS(f(y))||_L-infinity
ScaledStepTol - step size stopping criteria [scalar | eps~(2/3)]
Specifies the stopping tolerance on the maximum scaled step length:
I y_GerD) - yk I
[l === || _L-infinity
[l ly_(k+1)| + yscale ||
InitialSetup - initial call to linear solver setup [false | true]
Specifies whether or not KINSol makes an initial call to the linear solver
setup function.
MinBoundEps - lower bound on eps [false | true]
Specifies whether or not the value of eps is bounded below by 0.01*FuncNormtol.
Constraints - solution constraints [vector]
Specifies additional constraints on the solution components.
Constraints(i) 0 : no constrain on y(i)
Constraints(i) 1 : y(i) >= 0
Constraints(i) = -1 : y(i) <= 0
Constraints(i) = 2 : y(i) > O
Constraints (i) -2 : y(i) < O
If Constraints is not specified, no constraints are applied to y.

LinearSolver - Type of linear solver used [Dense | BiCGStab | GMRES]
Specifies the type of linear solver to be used for the Newton nonlinear solver.
Valid choices are: Dense (direct, dense Jacobian), GMRES (iterative, scaled
preconditioned GMRES), BiCGStab (iterative, scaled preconditioned stabilized
BiCG) . The GMRES and BiCGStab are matrix-free linear solvers.

JacobianFn - Jacobian function [function]
This propeerty is overloaded. Set this value to a function that returns
Jacobian information consistent with the linear solver used (see Linsolver).
If not specified, KINSOL uses difference quotient approximations.
For the Dense linear solver, JacobianFn must be of type KINDenseJacFn and must
return a dense Jacobian matrix. For the iterative linear solvers, GMRES and
BiCGStab, JacobianFn must be of type KINJactimesVecFn and must return a

40

Jacobian-vector product.

PrecModule - Built-in preconditioner module [BBDPre | UserDefined]

If the PrecModule = ’UserDefined’, then the user must provide at least a
preconditioner solve function (see PrecSolveFn)

KINSOL provides a built-in preconditioner module, BBDPre which can only be used
with parallel vectors. It provide a preconditioner matrix that is block-diagonal
with banded blocks. The blocking corresponds to the distribution of the variable
vector among the processors. Each preconditioner block is generated from the
Jacobian of the local part (on the current processor) of a given function g(t,y)
approximating f(y) (see GlocalFn). The blocks are generated by a difference
quotient scheme on each processor independently. This scheme utilizes an assumed
banded structure with given half-bandwidths, mldq and mudq (specified through
LowerBwidthDQ and UpperBwidthDQ, respectively). However, the banded Jacobian
block kept by the scheme has half-bandwiths ml and mu (specified through
LowerBwidth and UpperBwidth), which may be smaller.

PrecSetupFn - Preconditioner setup function [function]
PrecSetupFn specifies an optional function which, together with PrecSolve,
defines a right preconditioner matrix which is an aproximation
to the Newton matrix. PrecSetupFn must be of type KINPrecSetupFn.

PrecSolveFn - Preconditioner solve function [function]
PrecSolveFn specifies an optional function which must solve a linear system
Pz = r, for given r. If PrecSolveFn is not defined, the no preconditioning will
be used. PrecSolveFn must be of type KINPrecSolveFn.

GlocalFn - Local right-hand side approximation funciton for BBDPre [function]
If PrecModule is BBDPre, GlocalFn specifies a required function that
evaluates a local approximation to the system function. GlocalFn must
be of type KINGlocalFn.

GcommFn - Inter-process communication function for BBDPre [function]

If PrecModule is BBDPre, GcommFn specifies an optional function
to perform any inter-process communication required for the evaluation of
GlocalFn. GcommFn must be of type KINGcommFn.

KrylovMaxDim - Maximum number of Krylov subspace vectors [scalar | 10]
Specifies the maximum number of vectors in the Krylov subspace. This property
is used only if an iterative linear solver, GMRES or BiCGStab, is used
(see LinSolver).

MaxNumRestarts - Maximum number of GMRES restarts [scalar | 0]

Specifies the maximum number of times the GMRES (see LinearSolver) solver
can be restarted.

LowerBwidthDQ - BBDPre preconditioner DQ lower bandwidth [scalar | O]

Specifies the lower half-bandwidth used in the difference-quotient Jacobian
approximation for the BBDPre preconditioner (see PrecModule).

UpperBwidthDQ - BBDPre preconditioner DQ upper bandwidth [scalar | 0]

Specifies the upper half-bandwidth used in the difference-quotient Jacobian
approximation for the BBDPre preconditioner (see PrecModule).

LowerBwidth - BBDPre preconditioner lower bandwidth [scalar | 0]

If one of the two iterative linear solvers, GMRES or BiCGStab, is used

(see LinSolver) and if the BBDPre preconditioner module in KINSOL is used

(see PrecModule), it specifies the lower half-bandwidth of the retained banded
approximation of the local Jacobian block.

UpperBwidth - BBDPre preconditioner upper bandwidth [scalar | 0]

If one of the two iterative linear solvers, GMRES or BiCGStab, is used

(see LinSolver) and if the BBDPre preconditioner module in KINSOL is used

(see PrecModule), it specifies the upper half-bandwidth of the retained banded
approximation of the local Jacobian block.

41

See also
KINDenseJacFn, KINJacTimesVecFn
KINPrecSetupFn, KINPrecSolveFn
KINGlocalFn, KINGcommFn

KINMalloc

PURPOSE

KINMalloc allocates and initializes memory for KINSOL.
SYNOPSIS

function [] = KINMalloc(fct,n,varargin)

DESCRIPTION

KINMalloc allocates and initializes memory for KINSOL.
Usage: KINMalloc (SYSFUN, N [, OPTIONS [, DATA]]);

SYSFUN is a function defining the nonlinearproblem f(y) = O.
This function must return a column vector FY containing the
current value of the residual

N is the problem dimension.

OPTIONS is an (optional) set of integration options, created with
the KINSetOptions function.

DATA is (optional) problem data passed unmodified to all
user-provided functions when they are called. For example,
RES = SYSFUN(Y,DATA).

See also: KINSysFn

KINSol

PURPOSE

KINSol solves the nonlinear problem.

SYNOPSIS

function [status,y] = KINSol(yO, strategy, yscale, fscale)
DESCRIPTION

KINSol solves the nonlinear problem.

Usage: [STATUS, Y] = KINSol(YO, STRATEGY, YSCALE, FSCALE)

KINSol manages the computational process of computing an approximate
solution of the nonlinear system. If the initial guess (initial value
assigned to vector YO) doesn’t violate any user-defined constraints,

42

then KINSol attempts to solve the system f(y)=0. If an iterative linear
solver was specified (see KINSetOptions), KINSol uses a nonlinear Krylov
subspace projection method. The Newton-Krylov iterations are stopped

if either of the following conditions is satisfied:

[1£(y) | |_L-infinity <= 0.01*fnormtol
[ly[i+1] - y[i]l||_L-infinity <= scsteptol

However, if the current iterate satisfies the second stopping
criterion, it doesn’t necessarily mean an approximate solution
has been found since the algorithm may have stalled, or the
user-specified step tolerance may be too large.

STRATEGY specifies the global strategy applied to the Newton step if it is
unsatisfactory. Valid choices are ’None’ or ’LineSearch’.

YSCALE is a vector containing diagonal elements of scaling matrix for vector
Y chosen so that the components of YSCALE*Y (as a matrix multiplication) all
have about the same magnitude when Y is close to a root of f(y)

FSCALE is a vector containing diagonal elements of scaling matrix for f(y)
chosen so that the components of FSCALE*f(Y) (as a matrix multiplication)
all have roughly the same magnitude when u is not too near a root of f(y)

On return, status is one of the following:
0: KINSol succeeded
1: The initial yO already satisfies the stopping criterion given above
2: Stopping tolerance on scaled step length satisfied
-1: Tllegal attempt to call before KINMalloc
-2: One of the inputs to KINSol is illegal.
-5: The line search algorithm was unable to find an iterate sufficiently
distinct from the current iterate
-6: The maximum number of nonlinear iterations has been reached
-7: Five consecutive steps have been taken that satisfy the following
inequality:
| lyscalexp||_L2 > 0.99*mxnewtstep
—-8: The line search algorithm failed to satisfy the beta-condition
for too many times.
-9: The linear solver’s solve routine failed in a recoverable manner,
but the linear solver is up to date.
-10: The linear solver’s intialization routine failed.
-11: The linear solver’s setup routine failed in an unrecoverable manner.
-12: The linear solver’s solve routine failed in an unrecoverable manner.

See also KINSetOptions, KINGetstats

KINGetStats
PURPOSE
KINGetStats returns statistics for the main KINSOL solver and the linear
SYNOPSIS

function si

DESCRIPTION

= KINGetStats()

43

KINGetStats returns statistics for the main KINSOL solver and the linear
solver used.

Usage:

solver_stats = KINGetStats;

Fields in the structure solver_stats

nfe
nni
nbcf
nbops

O O O ©O

o fnorm

o step

o LSInfo

- total number evaluations of the nonlinear system function SYSFUN

- total number of nonlinear iterations

- total number of beta-condition failures

- total number of backtrack operations (step length adjustments)
performed by the line search algorithm

- scaled norm of the nonlinear system function f(y) evaluated at the

current iterate: ||fscalexf(y)||_L2
- scaled norm (or length) of the step used during the previous
iteration: ||uscalexp||_L2

- structure with linear solver statistics

The structure LSinfo has different fields, depending on the linear solver used.

Fields in LSinfo for the ’Dense’ linear solver
o name - ’Dense’
o njeD - number of Jacobian evaluations
o nfeD - number of right-hand side function evaluations for difference-quotient
Jacobian approximation
Fields in LSinfo for the ’GMRES’ or ’BiCGStab’ linear solver
o name - ’GMRES’ or ’BiCGStab’
o nli - number of linear solver iterations
o npe - number of preconditioner setups
o nps - number of preconditioner solve function calls
o ncfl - number of linear system convergence test failures
KINFree
PURPOSE

KINFree deallocates memory for the KINSOL solver.

SYNOPSIS

function

[J = KINFree()

DESCRIPTION

KINFree deallocates memory for the KINSOL solver.

Usage:

KINFree

44

3.2 Function types

KINDenseJacFn

PURPOSE

KINDenseJacFn - type for user provided dense Jacobian function.
SYNOPSIS

This is a script file.

DESCRIPTION

KINDenseJacFn - type for user provided dense Jacobian function.

The function DJACFUN must be defined as

FUNCTION [J, IER] = DJACFUN(Y,FY)
and must return a matrix J corresponding to the Jacobian of f(y).
The input argument FY contains the current value of f(y).
If successful, IER should be set to 0. If an error occurs, IER should
be set to a nonzero value.
If a user data structure DATA was specified in KINMalloc, then
DJACFUN must be defined as

FUNCTION [J, IER, NEW_DATA] = DJACFUN(Y,FY,DATA)
If the local modifications to the user data structure are needed in
other user-provided functions then, besides setting the matrix J and
the flag IER, the DJACFUN function must also set NEW_DATA. Otherwise,
it should set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead
to unnecessary copying).

See also KINSetOptions

NOTE: DJACFUN is specified through the property JacobianFn to KINSetOptions
and is used only if the property LinearSolver was set to ’Dense’.

KINGcommFn

PURPOSE

KINGcommFn - type for user provided communication function (BBDPre).
SYNOPSIS

This is a script file.

DESCRIPTION

KINGcommFn - type for user provided communication function (BBDPre).

The function GCOMFUN must be defined as

FUNCTION [] = GCOMFUN(Y)
and can be used to perform all interprocess communication necessary
to evaluate the approximate right-hand side function for the BBDPre

45

preconditioner module.
If a user data structure DATA was specified in KINMalloc, then
GCOMFUN must be defined as

FUNCTION [NEW_DATA] = GCOMFUN(Y,DATA)
If the local modifications to the user data structure are needed
in other user-provided functions then the GCOMFUN function must also
set NEW_DATA. Otherwise, it should set NEW_DATA=[] (do not set
NEW_DATA = DATA as it would lead to unnecessary copying).

See also KINGlocalFn, KINSetOptions

NOTES:
GCOMFUN is specified through the GcommFn property in KINSetOptions
and is used only if the property PrecModule is set to ’BBDPre’.

Each call to GCOMFUN is preceded by a call to the system function

SYSFUN with the same argument Y. Thus GCOMFUN can omit any communication
done by SYSFUN if relevant to the evaluation of G by GLOCFUN. If all
necessary communication was done by SYSFUN, GCOMFUN need not be provided.

KINGlocalFn

PURPOSE

KINGlocalFn - type for user provided RHS approximation function (BBDPre).
SYNOPSIS

This is a script file.

DESCRIPTION

KINGlocalFn - type for user provided RHS approximation function (BBDPre).

The function GLOCFUN must be defined as

FUNCTION G = GLOCFUN(Y)
and must return a vector G corresponding to an approximation to f(y)
which will be used in the BBDPRE preconditioner module. The case where
G is mathematically identical to F is allowed.
If a user data structure DATA was specified in KINMalloc, then
GLOCFUN must be defined as

FUNCTION [G, NEW_DATA] = GLOCFUN(Y,DATA)
If the local modifications to the user data structure are needed
in other user-provided functions then, besides setting the vector G,
the GLOCFUN function must also set NEW_DATA. Otherwise, it should set
NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to
unnecessary copying) .

See also KINGcommFn, KINSetOptions

NOTE: GLOCFUN is specified through the GlocalFn property in KINSetOptions
and is used only if the property PrecModule is set to ’BBDPre’.

46

KINJacTimesVecFn

PURPOSE

KINJacTimesVecFn - type for user provided Jacobian times vector function.
SYNOPSIS

This is a script file.

DESCRIPTION

KINJacTimesVecFn - type for user provided Jacobian times vector function.

The function JTVFUN must be defined as
FUNCTION [JV, FLAG, IER] = JTVFUN(Y,V,FLAG)
and must return a vector JV corresponding to the product of the
Jacobian of f(y) with the vector v. On input, FLAG indicates if
the iterate has been updated in the interim. JV must be update
or reevaluated, if appropriate, unless FLAG=false. This flag must
be reset by the user.
If successful, IER should be set to 0. If an error occurs, IER should
be set to a nonzero value.
If a user data structure DATA was specified in KINMalloc, then
JTVFUN must be defined as
FUNCTION [JV, FLAG, IER, NEW_DATA] = JTVFUN(Y,V,FLAG,DATA)
If the local modifications to the user data structure are needed in
other user-provided functions then, besides setting the vector JV, and
flags FLAG and IER, the JTVFUN function must also set NEW_DATA. Otherwise,
it should set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to
unnecessary copying) .

See also KINSetOptions

NOTE: JTVFUN is specified through the property JacobianFn to KINSetOptions
and is used only if the property LinearSolver was set to ’GMRES’ or ’BiCGStab’.

KINPrecSetupFn

PURPOSE

KINPrecSetupFn - type for user provided preconditioner setup function.
SYNOPSIS

This is a script file.

DESCRIPTION

KINPrecSetupFn - type for user provided preconditioner setup function.
The user-supplied preconditioner setup subroutine should compute

the right-preconditioner matrix P used to form the scaled preconditioned
linear system:

47

(Df*J(y)*(P™-1)*(Dy~-1)) * (Dy*P*x) = Df*(-F(y))

where Dy and Df denote the diagonal scaling matrices whose diagonal elements
are stored in the vectors YSCALE and FSCALE, respectively.

The preconditioner setup routine (referenced by iterative linear
solver modules via pset (type KINSpilsPrecSetupFn)) will not be
called prior to every call made to the psolve function, but will
instead be called only as often as necessary to achieve convergence
of the Newton iteration.

Note: If the PRECSOLVE function requires no preparation, then a
preconditioner setup function need not be given.

The function PSETFUN must be defined as

FUNCTION [IER] = PSETFUN(Y,YSCALE,FY,FSCALE)
If successful, PSETFUN must return IER=0. If an error occurs, then IER
must be set to a non-zero value.
The input argument FY contains the current value of f(y), while YSCALE
and FSCALE are the scaling vectors for solution and system function,
respectively (as passed to KINSol)

If a user data structure DATA was specified in KINMalloc, then
PSETFUN must be defined as

FUNCTION [IER, NEW_DATA] = PSETFUN(Y,YSCALE,FY,FSCALE,DATA)
If the local modifications to the user data structure are needed in
other user-provided functions then, besides setting the flag IER,
the PSETFUN function must also set NEW_DATA. Otherwise, it should
set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead
to unnecessary copying).

See also KINPrecSolveFn, KINSetOptions, KINSol

NOTE: PSETFUN is specified through the property PrecSetupFn to KINSetOptions
and is used only if the property LinearSolver was set to ’GMRES’ or ’BiCGStab’.

KINPrecSolveFn

PURPOSE

KINPrecSolveFn - type for user provided preconditioner solve function.

SYNOPSIS

This is a script file.

DESCRIPTION

KINPrecSolveFn - type for user provided preconditioner solve function.

The user-supplied preconditioner solve function PSOLFN
is to solve a linear system P z = r in which the matrix P is
the preconditioner matrix (possibly set implicitely by PSETFUN)

48

The function PSOLFUN must be defined as

FUNCTION [Z,IER] = PSOLFUN(Y,YSCALE,FY,FSCALE,R)
and must return a vector Z containing the solution of Pz=r.
If successful, PSOLFUN must return IER=0. If an error occurs, then IER
must be set to a non-zero value.
The input argument FY contains the current value of f(y), while YSCALE
and FSCALE are the scaling vectors for solution and system function,
respectively (as passed to KINSol)

If a user data structure DATA was specified in KINMalloc, then
PSOLFUN must be defined as

FUNCTION [Z, IER, NEW_DATA] = PSOLFUN(Y,YSCALE,FY,FSCALE,R,DATA)
If the local modifications to the user data structure are needed in
other user-provided functions then, besides setting the vector Z and
the flag IER, the PSOLFUN function must also set NEW_DATA. Otherwise,
it should set NEW_DATA=[] (do not set NEW_DATA = DATA as it would
lead to unnecessary copying).

See also KINPrecSetupFn, KINSetOptions

NOTE: PSOLFUN is specified through the property PrecSolveFn to KINSetOptions
and is used only if the property LinearSolver was set to ’GMRES’ or ’BiCGStab’.

KINSysFn

PURPOSE

KINSysFn - type for user provided system function
SYNOPSIS

This is a script file.

DESCRIPTION

KINSysFn - type for user provided system function

The function SYSFUN must be defined as

FUNCTION FY = SYSFUN(Y)
and must return a vector FY corresponding to f(y).
If a user data structure DATA was specified in KINMalloc, then
SYSFUN must be defined as

FUNCTION [FY, NEW_DATA] = SYSFUN(Y,DATA)
If the local modifications to the user data structure are needed
in other user-provided functions then, besides setting the vector FY,
the SYSFUN function must also set NEW_DATA. Otherwise, it should set
NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to
unnecessary copying).

See also KINMalloc

NOTE: SYSFUN is specified through the KINMalloc function.

49

4 Supporting modules

This section describes two additional modules in SUNDIALST B, NVECTOR and PUTILS. The functions
in NVECTOR perform various operations on vectors. For serial vectors, all of these operations default
to the corresponding MATLAB functions. For parallel vectors, they can be used either on the local
portion of the distributed vector or on the global vector (in which case they will trigger an MPI
Allreduce operation). The functions in PUTILS are used to run parallel SUNDIALSTB applications.
The user should only call the function mpirun to launch a parallel MATLAB application. See one of

the paralel SUNDIALSTB examples for usage.

The functions in these two additional modules are listed in Table 3 and described in detail in

the remainder of this section.

Table 3: The NVECTOR and PUTILS functions

N_VMax | returns the largest element of x
~ N_VMaxNorm | returns the maximum norm of x
8 N_VMin | returns the smallest element of x
= N_VDotProd | returns the dot product of two vectors
; N_VWrmsNorm | returns the weighted root mean square norm of x
N_VWL2Norm | returns the weighted Euclidean L2 norm of x
N_VLINorm | returns the L1 norm of x
n mpirun | runs parallel examples
o - .
£ mpiruns | runs the parallel example on a child MATLAB process
2 LAM_Start | lamboot and MPI_Init master (if required)
LAM Finish | clean MPITB MEX files from memory

50

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

4.1 NVECTOR functions

N_VDotProd

PURrRPOSE

N_VDotProd returns the dot product of two vectors
SYNOPSIS

function ret = N_VDotProd(x,y,comm)

DESCRIPTION

N_VDotProd returns the dot product of two vectors
Usage: RET = N_VDotProd (X, Y [, COMM])

If COMM is not present, N_VDotProd returns the dot product of the
local portions of X and Y. Otherwise, it returns the global dot
product.

SOURCE CODE

function ret = N_VDotProd(x,y,comm)

% Radu Serban <radu@llnl.gov>

% Copyright (c¢) 2005, The Regents of the University of California.

% $Revision$Date$

if nargin = 2
ret = dot(x,y);
else

ldot = dot(x,y);

gdot = 0.0;
MPI_Allreduce (ldot , gdot , 'SUM’ ,comm) ;
ret = gdot;
end
N_VL1Norm
PURPOSE

N_VL1Norm returns the L1 norm of x
SYNOPSIS
function ret = N_VL1Norm(x,comm)

DESCRIPTION

51

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

10

-

1

12

N_VL1Norm returns the L1 norm of x

Usage: RET = N_VLiNorm (X [, COMM])

If COMM is not present, N_VLINorm returns the L1 norm of
the local portion of X. Otherwise, it returns the global

L1 norm..

SOURCE CODE

function ret = N_VLINorm/x ,comm)

% Radu Serban <radu@llnl.gov>

% Copyright (c) 2005, The Regents of the University

% $Revision$Date$

of California .

if nargin =1
ret = norm(x,1);
else
Intm = norm(x,1);
gnrm = 0.0;
MPI_Allreduce (lnrm , gnrm, '"MAX’ |comm) ;
ret = gnrm;
end
N_VMax
PURPOSE

N_VMax returns the largest element of x
SYNOPSIS

function ret = N_VMax(x,comm)
DESCRIPTION

N_VMax returns the largest element of x

Usage: RET = N_VMax (X [, cOMM])

If COMM is not present, N_VMax returns the maximum value of
the local portion of X. Otherwise, it returns the global

maximum value.

SOURCE CODE

function ret = N_VMax(x,comm)

% Radu Serban <radu@llnl.gov>

% Copyright (c¢) 2005, The Regents of the University of California.

% $Revision$Date$

52

13

14

16

17

18

19

20

21

22

23

24

10

11

12

13

14

16

17

18

19

20

21

22

23

24

if nargin =1

ret = max(x);
else

lmax = max(x);

gmax = 0.0;

MPI_Allreduce (lmax , gmax, '"MAX’ comm) ;

ret = gmax;
end

N_VMaxNorm

PURPOSE

N_VMaxNorm returns the L-infinity norm of x

SYNOPSIS
function ret = N_VMaxNorm(x, comm)

DESCRIPTION

N_VMaxNorm returns the L-infinity norm of x

Usage: RET = N_VMaxNorm (X [, COMM])

If COMM is not present, N_VMaxNorm returns the L-infinity norm
of the local portion of X. Otherwise, it returns the global

L-infinity norm..

SOURCE CODE

function ret = N_-VMaxNorm(x, comm)

% Radu Serban <radu@llnl.gov>

% Copyright (c) 2005, The Regents of the University of California.

% $Revision$Date$

if nargin =1
ret = norm(x, 'inf’);
else
Intm = norm(x, ’inf’);
gnrm = 0.0;

MPI_Allreduce (lnrm , gnrm , 'MAX’
ret = gnrm;

end

,comm) ;

53

N_VMin

PURPOSE

N_VMin returns the smallest element of x
SYNOPSIS

function ret = N_VMin(x,comm)
DESCRIPTION

N_VMin returns the smallest element of x
Usage: RET = N_VMin (X [, COMM])

If COMM is not present, N_VMin returns the minimum value of
the local portion of X. Otherwise, it returns the global
minimum value.

SOURCE CODE

function ret = N_VMin(x,comm)

% Radu Serban <radu@llnl.gov>

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

% Copyright (c) 2005,
% $Revision$Date$

if nargin

MPI_Allreduce (lmin , gmin, "MIN’ |comm) ;
ret = gmin;

The Regents of the University of California.

min (x)

N_VWL2Norm

PURPOSE

N_VWL2Norm returns the weighted Euclidean L2 norm of x
SYNOPSIS

function ret = N_VWL2Norm(x,w,comm)

DESCRIPTION

o4

N_VWL2Norm returns the weighted Euclidean L2 norm of x
with weight vector w:
sqrt [(sum (i = 0 to N-1) (x[il*w[i])"2)]

Usage: RET = N_VWL2Norm (X, W [, COMM])

If COMM is not present, N_VWL2Norm returns the weighted L2
norm of the local portion of X. Otherwise, it returns the
global weighted L2 norm..

SOURCE CODE

function ret = N_VWL2Norm/(x ,w,comm)

11

12

13

14

16

17

18

19

20

22

23

24

26

27

28

29

% Radu Serban <radu@llnl.gov>
% Copyright (c¢) 2005, The Regents of the University of California.
% $Revision$Date$

if nargin = 2

= dot(x."2,w."2);
sqrt (ret);

dot(x.72,w."2);
MPI_Allreduce (lnrm ,gnrm, 'SUM’ ,comm) ;

sqrt (gnrm) ;

N_VWrmsNorm

PURPOSE

N_VWrmsNorm returns the weighted root mean square norm of x
SYNOPSIS

function ret = N_VWrmsNorm(x,w,comm)

DESCRIPTION

N_VWrmsNorm returns the weighted root mean square norm of x
with weight vector w:
sqrt [(sum (i = 0 to N-1) (x[ilx*w[i])~2)/N]

Usage: RET = N_VWrmsNorm (X, W [, COMM])
If COMM is not present, N_VWrmsNorm returns the WRMS norm

of the local portion of X. Otherwise, it returns the global
WRMS norm. .

SOURCE CODE

95

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

function ret = N_VWrmsNorm(x ,w,comm)

% Radu Serban <radu@llnl.gov>
% Copyright (c¢) 2005, The Regents of the
% $Revision$Date$

University of California.

if nargin = 2

dot(x.72,w."2);
sqrt (ret/length(x));

dot(x.72,w."2);

MPI_Allreduce (Inrm , gnrm, 'SUM’ ,comm) ;
In = length (x);

MPI_Allreduce (In ,gn, 'SUM’ comm) ;

sqrt (gnrm/gn);

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

37

4.2 Parallel utilities

mpirun

PURPOSE

mpirun runs parallel examples.
SYNOPSIS

function [] = mpirun(fct,npe,dbg)
DESCRIPTION

mpirun runs parallel examples.
Usage: mpirun (FCT , NPE [, DBG])

FCT - name (or handle) of the function to be executed on all MATLAB
processes.

NPE - number of processes to be used (including the master).

DBG - flag for debugging. If true, spawn MATLAB child processes
with a visible xterm. (default DBG=false)

SOURCE CODE

function [] = mpirun(fct ,npe,dbg)

% Radu Serban <radu@llnl.gov>
% Copyright (c) 2005, The Regents of the University of California.
% $Revision$Date$

ih = isa(fct, function_handle’);
is = isa(fct,’char’);
if ih
sh = functions(fct);
fct_str = sh.function;
elseif is
fct_str = fct;

else
error ('mpirun:: .Unrecognized._function’);

end

if exist(fct_str) "= 2
err_msg = sprintf(’mpirun:: _Function %s._not._in_search_path.’ fct_str);
error (err_msg);

end

nslaves = npe—1;

LAM_Start(nslaves);
debug = false;

if (nargin > 2) & dbg
debug = true;

o7

38

39

40

41

42

43

44

10

11

12

13

14

15

16

17

18

end

cmd_slaves = sprintf(’mpiruns(’%s’’)’,fct_str);
if debug
cmd = 'xterm ’;
args = {’—e’, ’matlab’, ’—nosplash’, ’—nojvm’, '—r’ ,cmd _slaves };
else
cmd = 'matlab ’;
args = {’—nosplash’ ’—nojvm’,’—r’ ,cmd_slaves };
end

[info children errs] = MPI_Comm _spawn(cmd, args ,nslaves , 'NULL’ ,0, SELF’);
[info NEWORLD] = MPI_Intercomm_merge (children ,0);

nvin (1 ,NEWORLD) ;

feval (fct ,NEWORLD) ;

nvm (2);

LAM _Finish;

mpiruns

PURPOSE

mpiruns runs the parallel example on a child MATLAB process.
SYNOPSIS

function [] = mpiruns(fct)

DESCRIPTION

mpiruns runs the parallel example on a child MATLAB process.
This function should not be called directly. It is called
by mpirun on the spawned child processes.

SOURCE CODE

function [] = mpiruns(fct)

% Radu Serban <radu@llnl.gov>

% Copyright (c¢) 2005, The Regents of the University of California.
% $Revision$Date$

[dum hostname]=system (’hostname’);
fprintf(’child MATLAB_process._on.%s\n’ ,hostname);

MPI_Init;
MPI_Errhandler_set ("WORLD’ , 'RETURN") ;

[info parent] = MPI_Comm_get_parent;

o8

19

20

21

22

23

24

25

26

27

28

29

30

15

16

17

18

fprintf(’waiting._for_the.parent_to_merge_MPI_.intercommunicators.....");

[info NEWORID] = MPI_Intercomm_merge (parent ,1);
fprintf (’OK!\n’);

MPI_Errhandler_set (NEWORLD, 'RETURN") ;
nvin (1 ,NEWORLD) ;

feval (fct ,NEWORID) ;

nvm(2);

MPI_Finalize;
LAM _Finish;

LAM_Finish

PURPOSE
LAM_Finish cleans MPITB MEX files from memory.
SYNOPSIS
function LAM_Finish
DESCRIPTION
LAM_Finish cleans MPITB MEX files from memory.
Most probably used in the following sequence:
MPI_Init
&1t ;MPITB code>
MPI_Finalize;
LAM_Clean; % required to avoid

MPI_Init; % matlab crash due to MPI re-init

See MPI_Init help page for more details

SOURCE CODE
function LAM_Finish

[M, MEX] = inmem; % clear all MPIx MEX files

M = MEX(strmatch ('MPI_’ MEX)):

clear (M{:}) % allow for MPI_Init again
LAM_Start

PURPOSE

LAM_Start invokes lamboot (if required) and MPI_Init (if required).
SYNOPSIS
function LAM_Start(unslaves, rpi, hosts)

DESCRIPTION

59

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

LAM_Start invokes lamboot (if required) and MPI_Init (if required).
Usage: LAM_Init [(NSLAVES [, RPI [, HOSTS]])]

LAM_Start boots LAM and initializes MPI to match a given number of slave
hosts (and rpi) from a given list of hosts. All three args optional.

If they are not defined, HOSTS are taken from a builtin HOSTS list
(edit HOSTS at the beginning of LAM_Start.m to match your cluster)
or from the bhost file if defined through LAMBHOST (in this order).

If not defined, RPI is taken from the builtin variable RPI (edit it
to suit your needs) or from the LAM_MPI_SSI_rpi environment variable
(in this order).

SOURCE CODE

function LAM_Start(nslaves, rpi, hosts)
% Heavily based on the LAM_Init function in MPITB.
%

% DEFAULT VALUES %
Y%

HOSTS = {’tux30’, tux76’, tux105’, tux111’};
RPI = "tcp ;

%
% ARGCHECK
%

%% List of hosts

if nargin>2
% hosts passed as an argument ...
if “iscell (hosts)
error ('LAM_Init: _3rd_arg._is.not_.a_cell’);
else
for i=1:length (hosts)
if “ischar (hosts{i})
error ('LAM_Init:_3rd_arg._is_not_cell —of—strings’);
end
end
end
else
% We must get the hosts from somewhere else ...

if Tisempty (HOSTS)

hosts = HOSTS; % Variable HOSTS defined

else
bfile = getenv ('LAMBHOST’);
if “isempty(bfile)

hosts = readHosts(bfile); % bhost defined in environment

else
% Cannot define hosts!

60

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

T4

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

929

100

101

103

104

105

106

error ('LAM _Init:: _cannot._find _list _of_hosts ’);
end
end
end

%% RPI

if nargin>1
% RPI passed as an argument
if “ischar (rpi)
error ('LAM _Init: _.2nd_arg.is_not_a_string’)
else
% full rpi name, if single letter used
rpi=rpi_str (rpi);
if isempty(rpi)
error ('LAM_Init:_2nd.arg.is .not._a_known_RPI")
end
end
else
% We must get RPI from somewhere else ...
if “isempty (RPI)
rpi = rpi-str (RPI); % Variable RPI defined above
else
RPI = getenv (’LAM_MPI_SSI.rpi’);
if “isempty (RPI)

rpi = rpi_str (RPI); % RPI defined in environment
else
error ('LAM_Init:: _cannot._find _.RPI");
end
end
end

% Number of slaves

if nargin>0

if “isreal(mnslaves) || fix(nslaves) =nslaves || nslaves>=length (hosts)
error ('LAM _Init:_1st_arg_is_not.a_valid #slaves’)
end
else
nslaves = length (hosts)—1;
end
%
% LAMHALT %
%

% reasons to lamhalt:

% — mnot enough nodes (nslv+41) % NHL < NSLAVES+1

% — localhost not in list % weird — just lamboot (NHL=0)
% — localhost not last in list % weird — just lamboot (NHL=0)
%

% Lam Nodes Output
[stat , LNO] = system (’lamnodes’);
if “stat % already lambooted

61

emptyflag = false;
if isempty (LNO)

% this shouldn’t happen

emptyflag=true;

% it ’s MATLAB’s fault T think

fprintf(’pushing._stubborn MATLAB.” system” _call _(lamnodes): .’);
end

while isempty (LNO) || stat
fprintf(’."7);
[stat , LNO] = system(’lamnodes’);
end
if emptyflag
fprintf(’\n’);
end

LF = char (10);

INO = split (LNO,LF); % split lines in rows at \n

[stat , NHL] = system(’lamnodes|wc.—1"); % Number of Hosts in Lamnodes

emptyflag = false; % again ,

if isempty (NHL) % this shouldn’t happen
emptyflag=true; % it ’s MATLAB’s fault I think

fprintf(’pushing_stubborn MATLAB.” system” _call .(lamnodes |wc):.");
end
while isempty (NHL) || stat
fprintf(’.7);
[stat , NHL] = system(’lamnodes|wc.—1");
end
if emptyflag
fprintf(’\n’);
end

NHL = str2num (NHL);

if NHL "= size (LNO,1) || ~ NHL>0 % Oh my, logic error
NHI= 0; % pretend there are no nodes
disp (’LAM Init:._internal_logic._error:._lamboot)

end % to force lamboot w/o lamhalt

if isempty (findstr (LNO(end,:), this_node’)) % master computer last in list
disp ("LAM _Init: _.local_host_is_not_last_.in_nodelist , chope_that’’s_right’)
beforeflag=0;
for i=1:size (LNO,1)
if “isempty (findstr (LNO(i,:), this_node’))
beforeflag=1;

break; % well , not 1st but it’s there
end
end % we already warned the user
if “beforeflag % Oh my, incredible, not there
NHI= 0; % pretend there are no nodes
disp ('LAM_Init: _.local _host .not._in LAM? _.lamboot ")
end
end % to force lamboot w/o lamhalt

62

161

163

164

165

166

168

169

170

171

173

174

175

176

178

179

180

181

183

184

185

186

188

189

190

191

193

194

195

196

198

199

200

201

202

203

204

205

206

207

208

209

210

211

213

214

if NHL > 0 % accurately account multiprocessors

NCL = 0; % number of CPUs in lamnodes
for i=1:size (LNO,1) % add the 2nd 7:” —separated
fields=split (LNO(i,:), " :"); % field , ie, #CPUs
NCL = NCL + str2num(fields (2,:));
end
if NCI<NHL % Oh my, logic error
NHI= 0; % pretend there are no nodes
disp ('LAM _Init:_internal_logic_error:._lamboot ")
else
% update count
NHI=NCL;
end % can’t get count from MPI,
end % since might be not _Init "ed
if NHL < nslaves+1 % we have to lamboot
% but avoid getting caught
[infl flgl]=MPI_Initialized; % Init?
[infF flgF]=MPI _Finalized; % Finalize?
if infl || infF
error ('LAM_Init:_error._calling. _Initialized/_Finalized?”)
end
if flgl && ~flgF % avoid hangup due to
MPI_Finalize; % inminent lamhalt
clear MPI_x % force MPI_Init in Mast/Ping
disp ("LAM _Init: MPI_already .used—_clearing _before _.lamboot ")
end % by pretending "mnot _Init”
if NHL > 0 % avoid lamhalt in weird cases
disp ('LAM _Init: _halting LAM")
system (’lamhalt ’); % won’t get caught on this
end
end
end
%
% LAMBOOT
%
% reasons to lamboot: %
% — not lambooted yet % stat =0
% — lamhalted above (or weird) % NHL < NSLAVES+1 (0 _is_ <)
%
if stat || NHI<nslaves+l
HNAMS=hosts{end };
for i=nslaves:—1:1
HNAMS=strvcat (hosts{i} ,HNAMS);
end
HNAMS = HNAMS’; % transpose for ”for”

fid=fopen (’bhost’, 'wt’);
for h = HNAMS

63

fprintf (fid , %s\n’ ,h’); % write slaves’ hostnames
end
fclose (fid);

disp (’LAM._Init:_booting LAM’)
stat = system(’lamboot.—s_.—v._bhost’);
if stat % again, this shouldn’t happen
fprintf(’pushing._stubborn MATLAB.” system” _call _(lamboot): .’);
while stat
fprintf(’.7); stat = system(’lamboot._—s_—v._bhost’);
end
fprintf(’\n’);
end
system ('rm_—f_bhost "); % don’t need bhost anymore
end % won’t wipe on exit/could lamhalt
%
% RPI CHECK
%
[infl flgl] = MPI_Initialized; % Init?
[infF flgF] = MPI_Finalized; % Finalize?
if infl || infF
error ('LAM_Start: _error_calling._Initialized/_Finalized?")
end
if flgl && “flgF % Perfect , ready to start
else % something we could fix?
if flgl || flgF % MPI used, will break
clear MPI_x % unless we clear MPITB
disp (’LAM_Start: .MPI_already .used—_clearing’) % must start over
end
MPI_Init;
end
%
% NSLAVES CHECK
%
[info attr flag] = MPI_Attr_get (MPLCOMM WORLD, MPI_UNIVERSE SIZE) ;
if info | “flag
error ('LAM_Init: _attribute .MPI_.UNIVERSE_SIZE_does.not._exist?”)
end
if attr<2
error ('LAM _Init:_required .2_computers._in LAM”)
end
VG
function rpi = rpi_str(c)

64

269

270

271

272

273

274

276

277

278

279

281

282

283

284

286

287

288

289

291

292

293

294

296

ZRPI.STR Full LAM SSI RPI string given initial letter(s)
%
% rtpi = rpi_str (c)

%
% c initial char(s) of rpi name: t,l,u,s
% rpi full rpi name, one of: tecp, lamd, usysv, sysv
% Use 7 if ¢ doesn’t match to any supported rpi
%
flag = nargin™=1 || isempty(c) || “ischar(c);
if flag
return
end

c=lower (c(1));

rpis={"tcp’,’lamd’, ’usysv’, ’sysv’, 'none’ }; % ’none’ is sentinel
for i=1:length(rpis)

if rpis{i}(l)==c

break

end
end
if i<length(rpis)

rpi=rpis{i}; % normal cases
else

rpi=’"; % no way, unknown rpi
end

65

References

[1] A. M. Collier, A. C. Hindmarsh, R. Serban, and C.S. Woodward. User Documentation for
KINSOL v2.2.0. Technical Report UCRL-SM-208116, LLNL, 2004.

[2] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S.
Woodward. SUNDIALS, suite of nonlinear and differential/algebraic equation solvers. ACM
Trans. Math. Softw., (submitted), 2004.

[3] A. C. Hindmarsh and R. Serban. User Documentation for CVODES v2.1.0. Technical report,
LLNL, 2004. UCRL-SM-208111.

66

